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ABSTRACT

Collision Avoidance (CA) is one of the most challenging
and fundamental problems in the Unmanned Aerial Vehicle
(UAV) ecosystem. The unmanned version of Airborne Colli-
sions Avoidance Systems (ACAS-Xu) detects collision threats
and informs pilots of avoidance maneuvers to perform. It
makes decisions based on an optimized cost tables. However,
these tables are too large and heavy (∼5GB) to be integrated
on the current certified avionic hardware. In this paper, we
present a machine learning (ML) based approach to reduce
the memory footprint of the cost tables by approximating them
using a deep neural network (DNN). Training results show that
the proposed approach reduces the memory footprint drasti-
cally by a factor of 500 from 5GB to 10MB while maintaining
the same level of safety. Additionally, we embedded the DNN
based approach on an edge artificial intelligence (AI) device
and demonstrated its ability to operate on limited hardware
with low processing time.

I. INTRODUCTION

In 1978, a collision between a light aircraft and a com-
mercial airliner over San Diego, California, led the Federal
Aviation Administration (FAA) to launch the Traffic alert
and Collision Avoidance System (TCAS) [13]. TCAS helps
pilots to avoid nearby traffic using traffic alerts (TAs) and to
prevent near mid-air collisions (NMAC). In 1986, a collision
over Cerritos, California, resulted in a mandate requiring
certain classes of aircraft to be equipped with TCAS II, an
improved version of the Collision Avoidance (CA) system
providing resolution advisories (RAs) to mitigate the risk of
collision. Although these systems performed well in tests, it
was concluded that these systems generated a high rate of
unnecessary alerts which disturb pilots and lead them to make
unnecessary manoeuvres..

The FAA has initiated research and development of a new
approach to Airborne Collision Avoidance System (ACAS-
X) since 2008 with the main objective of detecting collision
threats and informing the pilot of the vertical and/or horizontal
avoidance maneuvers to perform. ACAS-X delivers several
advantages over the classical TCAS systems by guaranteeing
improved safety while reducing the unnecessary alert rate. The
intent is that in the next few years, ACAS-X will gradually
replace TCAS II.

ACAS-X system is capable of providing collision avoidance
(CA) maneuvers and resolution advisories (RA) that take
into account particularities of each platform (airplane, drone,
helicopter) through its different variants: ACAS-Xa (active),
ACAS-Xp (passive), ACAS-Xo (operations) and ACAS-Xu
designed for UAV or remotely piloted aircraft systems. While
this work concerns the ACAS-Xu version, it can be easily
extended to other ACAS-X versions.

ACAS-Xu takes advantage from recent advances in compu-
tational techniques. It formulates the CA problem as a Markov
Decision Process (MDP) and uses Dynamic Programming to
generate optimized advisories. The decision logic is repre-
sented as a large numeric table known as cost table storing
scores for all possible manoeuvres and it used to determine
resolution advisories given to pilots. However, the cost table
size grows dramatically (∼5GB) with the number of state
variables and makes it challenging to embed in a certified
avionic hardware.

Deep neural networks (DNNs) have demonstrated state-of-
the-art performance on many AI applications such as speech
recognition, image classification and video prediction. Replac-
ing the classical cost table by a DNN allows to gain in memory
footprint size. Moreover, instead of indicating the avoidance
maneuver by consulting a large amount of data present in the
cost table, the system computes the avoidance costs using the
DNN.

The contribution of this study is twofold. First, we focus
on cost table compression and base our work on DNNs to
approximate the classical cost table. Then, we explore DNN
embedding on a dedicated edge AI device and evaluate the
integration results in terms of processing time and hardware
capabilities.

The rest of the paper is structured as follows: In the next
section we briefly review related work. Section III describes
the cost table compression and the training process. Then, in
Section IV we investigate DNN embedding and evaluate the
real-time inference phase. Finally, we conclude the paper and
present future work in Section V.

II. RELATED WORK

A. Collision avoidance related work

Several studies have been conducted on CA systems. Most
of these studies used dynamic programming and optimization
tools to derive the CA decision logic.
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The authors of [7] proposed an Origami based table com-
pression approach. The main idea is to rearrange the cost table
into a collection of small tables by exploiting redundancies and
symmetries in the system. This approach results in acceptable
safety performance. However, the compressed table represen-
tation still occupies a large memory footprint. The CA problem
is formulated as a stochastic problem in the form of a multi-
agent Markov decision process (MMDP) in [10] with a focus
on advisories in the horizontal plane. Compared to closest-
threat heuristics and an uncoordinated algorithm for collision
avoidance, authors show that this method scales and resolves
conflicts efficiently. New collision avoidance approaches for
ACAS sXu, a variant that provides CA for small UAV (sUAV),
are introduced in [3]. Using Monte Carlo simulations of three
different scenarios: (i) manned aircraft avoiding sUAV, (ii)
sUAV avoiding manned aircraft and (iii) manned aircraft and
sUAV avoiding each other’s, authors showed that the proposed
CA scheme leads to a good safety level and optimal alerting
rates compared to classical CA schemes. A DNN is used as an
alternative to reduce the cost table size in [6]. Practically, the
regression DNN gathers the Kinematics between the ownship
and the intruder to output the associated cost vectors.

Only few literature works studied cost table reduction size
using a DNN based approach and none of these works detailed
the dataset generation and training processes.

B. Edge AI related work

The usage of DNN based models for real-time applica-
tions received considerable attention from both industry and
academia in recent few years. This subsection reviews previous
work on embedding DNNs on edge AI devices.

The processing resources usage for object detection appli-
cations is evaluated in [12]. The study is performed using a
NVIDIA Jetson Nano and the You Only Look Once (YOLO)
algorithm is used to identify and count objects in real-time.
The same edge AI device is used to embed a pedestrian
and vehicles recognition framework in [1]. The authors used
convolutional DNNs for object detection tasks. The results are
good pointing out that the processing time is relatively high in
complex environmental conditions. The authors of [9] propose
an implementation of a tiny version of the YOLO model for
a real-time object detection application. The study highlights
the efficiency of DNNs deployment on cheap and low power
on embedded hardware such as Nvidia Jetson Nano. Several
DNNs and edge computing devices for autonomous safety
and security of mobile and aerial robotics are highlighted in
[4]. The authors overview optimization techniques to speed
up DNNs inference such as network pruning, knowledge
distillation, model partitioning and data quantization.

In summary, DNNs can be embedded in hardware such
as the NVIDIA Jetson Nano while maintaining good perfor-
mance. However, to the best of our knowledge, no previous
work studied the integration of a time sensitive application
such as CA for UAVs and analyzed its performance on an AI
dedicated hardware.

Variables Min Max Unit Type
Range (ρ) 11 9.6e+4 nm float
Theta (θ) -π π radian float
Phi (ϕ) -π π radian float
Ownship speed (vown) 55 270 nmph float
Intruder speed (vintr) 12 320 nmph float
Previous action (aprev) 1 5 - int
Current Action (acurrent) 1 5 - int

TABLE I: Model variables.

III. COST TABLE COMPRESSION

In this section we introduce the system model, the dataset,
the DNN and the training results.

A. Problem Formulation

We consider a system composed of two UAVs: the own-
ship, equipped with ACAS-Xu system, and the intruder, not
equipped with any CA system, facing each other. The system
model is shown in Figure 1, where:

• ρ (ft): the horizontal range,
• θ (rad): the relative intruder track angle,
• ϕ (rad): relative bearing to the intruder,
• vown (ft/s): the ownship speed,
• vintr (ft/s): intruder speed.

Figure 1: Ownship and intruder on the horizontal plane.

The resolution advisories and possible actions to be taken
by the ownship are categorized into two types: (i) the ones
with no necessary maneuvering and (ii) the ones constraining
the ownship to a given turn rate. The former mainly consists of
the Clear Of Conflict maneuver (COC) allowing the ownship
to turn freely, while the later is composed of four advisories
described as follows:

• Weak Left (WL): [1.0◦/s, 2.0◦/s]
• Strong Left (SL): [2.0◦/s, 4.0◦/s]
• Weak Right (WR): [-2.0◦/s, -1.0◦/s]
• Strong Right (SR): [–4.0◦/s, -2.0◦/s]

B. Dataset

The dataset is generated based on the classical cost table
and by simulating a set of encounter models. The considered
encounter models [8] are based on realistic flight trajectories
simulating collision scenarios between the ownship and the
intruder. The dataset generation process is shown in Figure 2
and is described as follows:
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[1] Defining and running representative encounter models
corresponding to a set of ownship-intruder pairs.

[2] Collecting sensors information and ownship-intruder
kinematics (range, speeds, angles) to form an input vector.

[3] Calculating the cost vector based on the classical cost
table and the input vector.

This operation is repeated periodically for each encounter
model simulation. An encounter model simulation lasts 120
sec and data (input and cost vectors) is recorded every one
millisecond (1ms). The dataset1 contains 7.8 millions instances
(∼ 5GB of data) and it is formed by concatenating the input
vector and the cost vector.

Figure 2: Dataset generation Pipeline.

The ACAS-Xu code processes the input vector and contains
a function calling the cost table (call Table()). Furthermore,
this code maps the output cost vector, composed of 10 costs,
to resolution advisories (COC, WL, SL...) provided to pilots.

C. Deep Neural Network model Training

We remind the reader that the objective of this section is
to demonstrate that the DNN approximation of the classical
cost table reduces the memory footprint without affecting the
safety performance.

Figure 3: The proposed DNN architecture.

The proposed DNN is a Multi-Layer Perceptron (MLP)
composed of an input layer of 7 nodes, 9 hidden layers

1The dataset is available on request from the authors.

and an output layer of 10 nodes. A MLP is fully connected
DNN where each node is connected with all nodes of the
next layer and each connection has a particular weight (w)
characterizing the impact of this node on the nodes of the
next layer. The objective of the DNN is to approximate
the cost vector C = [c1, c2, ..., c10], given an input vector
p = [ρ, θ, ϕ, vown, vintr, aprev, acurrent], with aprev is the
previous resolution advisory and acurrent is the current reso-
lution advisory. This problem is known as a multi-regression
problem:

C = f(p), (1)

where f is the function to be learned.
During the training phase, the model learns network weights

(w) from the training set (80% of dataset). The weights are
iteratively updated using the back-propagation algorithm [5] in
order to reduce the network loss and regression errors. In the
inference phase, the network weights are fixed and the model
is evaluated on test data (20% of dataset).

The DNN is implemented in Python using the Keras library
running in the top of Tensorflow and is trained using a
workstation equipped with a NVIDIA dual Titan RTX GPUs.

D. Simulation results

In this subsection, we discuss both DNN performance and
operational results.

We have performed a grid search to find the optimal DNN
hyperparameters values. Grid search is a tuning technique
based on exhaustive search to compute the optimum values of
hyperparameters. Due to lack of space, grid search details are
omitted. The optimal network architecture is a DNN with 11
layers of 7, 128, 128, 128, 64, 64, 64, 32, 32, 32, 10 nodes.
The optimal hyperparameters found through the grid search
process are a RELU activation function for hidden layers and
a sigmoid for the output layer with a learning rate of 0,1, an
Adam optimizer, a normal kernel initialization and a batch size
of 32.

To evaluate the DNN performance, we consider the same
pipeline used to generate the dataset. The only difference is
that instead of computing resolution advisories based on the
classical cost table we use the trained DNN.

1) ML performance: We evaluated the DNN performance
and its ability to generalize using the R2 (R-squared) metric
defined as:

R2 = 1−
∑

i(Ci − f(pi))∑
i(Ci − Ĉ)

(2)

where pi denotes the input vector of instance i, f(pi) the cost
vector predicted by the DNN for instance i, Ci the ground truth
cost vector of instance i and Ĉ the average of all predicted cost
vectors. The R2 metric measures how well the DNN model
fits the classical cost table data. Usually, it ranges between 0
and 1 and the closer it is to 1, the more accurate the regression
of the model is.

Figure 4 shows the R2 metric convergence. The R2 con-
verges quickly and reaches a score of 99% in less than 50
epochs. The same convergence speed is observed for the MSE
metric which converge to 0 after few epochs of training.
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Figure 4: R2 vs Epochs.

2) Safety performance: To derive safety performances, we
conducted extensive simulations of 5000 encounter model
scenarios and computed the anti-collision advisories using
both DNN and classical cost table.

The Near Mid Air Collision (NMAC) rate is used to evaluate
the safety of the DNN equipped system. It occurs when
two aircrafts come within 500 feet (∼150m) horizontally.
Simulation results show that the NMAC rate of DNN is lower,
and hence better, than the NMAC rate of the classical cost table
by 0.13% (0.0013). Therefore, it is guaranteed that resolution
advisories given by the DNN do not degrade the safety of the
system.

Furthermore, the recommended avoidance manoeuvres are
99.7% identical to the manoeuvres proposed by the classical
cost table, ensuring a strong coherence between the two
approaches.

It can be concluded that approximating the classical cost
table by a DNN reduces drastically the size by a factor of 500
without affecting safety performance.

In the next section, we study the feasibility of embedding
the trained DNN in an edge AI device.

IV. ANTI-COLLISION MODEL EMBEDDING: EDGE AI
APPLICATION

A. Materials Description: NVIDIA Jetson Nano

We used a NVIDIA Jetson Nano2 to embed the DNN and
to accelerate the inference process. The NVIDIA Jetson Nano
is a low power Graphical Processing Unit (GPU) offering high
processing capabilities. It is a compact size device (69,6mm
x 45mm), equipped with a quad-core ARM Cortex-A57 CPU,
a 128 CUDA core Nvidia Maxwell architecture GPU, a 2GB
of RAM and can work in two power modes at 5 Watts and
10 Watts. The NVIDIA Jetson Nano, shown in Figure 5, is
the lightest model of Jetson series, with 140 grams and peak
performance of 472 GFLOS3. An advantage of the NVIDIA
Jetson Nano is it compatibility with the most popular machine
learning frameworks such as TensorFlow and PyTorch and
hence making deployment of AI based models an easy task.

2https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/

3Giga Float OPerations per second

Figure 5: NVIDIA Jetson Nano device.

B. Scenario pipeline

The same pipeline used in the previous section for dataset
generation and performance evaluation is used in this section
too. However, instead running experiments on the workstation,
the pipeline is embedded on the NVIDIA Jetson Nano as
shown in Figure 6.

Figure 6: Collision Avoidance Pipeline.

We consider two different scenarios where the ownship is
equipped with the ACAS-Xu capabilities on the horizontal
plane and tries to avoid the intruder. In scenario 1, the intruder
has a curved path while in scenario 2 the intruder has a direct
path as illustrated in Figure 7. Both scenarios last 120 seconds.

As shown in Figure 7a, scenario 1 can be decomposed into
7 phases as follows: In phase (1) no threat is raised. A threat
is raised in phase (2) when the intruder starts approaching
the ownship (Fig. 8b and Fig 8c). The ACAS-Xu proposes a
resolution advisory to the ownship to turn right. During phase
(3) the threat is withdrawn and no maneuver is proposed to the
ownship (Fig. 8d). Due to the curved path of the intruder, it
enters a risk area and hence raises a new collision threat. The
ACAS-Xu advises the ownship to turn right during phase (4)
(Fig. 8e). In phase (5) the threat is withdrawn (Fig. 8f). During
phase (6), the intruder gets closer again to the ownship and
new advisories are released by the ACAS-Xu (Fig. 8g). Finally,
the risk of collision is withdrawn and simulation ends during
phase (7) (Fig. 8h). The state of the intruder and the advisories
given by the ACAS-Xu system are detailed in Figure 8.

Furthermore, the minimum distance between the ownship
and the intruder is 4853m respecting the NMAC separation
distance.
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(a) Scenario 1: Curved intruder path. (b) Scenario 2; Direct intruder path.

Figure 7: Scenarios illustrations: Aircraft 0 (in red) is the ownship and Aircraft 1 (in blue) is the intruder.

(a) Phase (1): No risk (b) Phase (2): risk (c) Phase (2): risk (d) Phase (3): No risk

(e) Phase (4): risk (f) Phase (5): No risk (g) Phase (6): risk (h) Phase (7): No risk

Figure 8: Scenario 1 phases: ownship in red and intruder in blue.

C. Embedding results

Having a low processing time is an important advantage
when designing DNNs based applications in embedded sys-
tems. In this subsection we evaluate the simulation (inference)
time and processing capabilities of the considered edge AI
device.

We implemented 5 different versions of the ACAS-Xu DNN
using various languages: Julia [2], CUDA Julia using libraries
such as Flux.jl, C, CUDA C and an optimized CUDA C
version. CUDA [11] is a parallel computing platform and
programming model for general computing on graphical pro-
cessing units (GPUs). It reduces the time to perform compute-

intensive tasks, by allowing workloads to run on GPUs. It can
be seen from Table II that the processing time is reduced using
C language compared to Julia. Additionally, CUDA speeds up
the DNN calculations for both C language and Julia versions.
In fact the processing time of the played scenario is 360 sec
using C language, and it is reduced to 132 sec using a CUDA
C code for scenario 1 and it is 1303 sec for Julia reduced to
794 sec using CUDA Julia for the same scenario.

The optimized C CUDA code version is a DNN performing
operation in half-precision format. This gives a significant
acceleration over normal C CUDA and normal C codes.
Converting DNN weights and bias from single precision floats
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(FP32) to half precision floats (FP16) allows to reduce the
number of bytes accessed, thus reducing the execution time.
Naturally, the execution time of scenario 1 is higher than
scenario 2 because the collision threat is raised 3 times and
hence the DNN is solicited 3 times (each collision threat until
the threat is withdrawn).

DNN implementation Scenario 1 Scenario 2
Julia 1303 sec 1200 sec
Julia CUDA 794 sec 700 sec
C 360 sec 300 sec
C CUDA 132 sec 133 sec
Optimized C CUDA 55 sec 50 sec

TABLE II: Simulation times.

Furthermore, we measured the NVIDIA Jetson Nano per-
formance in terms of GPU, CPU, RAM usages and equipment
temperature using the Jetson Stats Tool4. As reported in Table
III, the average GPU usage over time rises from 4% to 30 %
for scenario 2 and 40% for scenario 1. In fact, the collision
threat is raised 3 times in scenario 1 vs 1 time for scenario
2 and hence the DNN solicits GPU capabilities for a longer
period when scenario 1 is played. The RAM memory and
CPU usage changed from 12% to 90% and from 5% to 96%
respectively, and remained at the same level during the whole
simulations. Device temperature is highly correlated to GPU
usage and it is 41◦C for scenario 1 and 39◦C for scenario 2.

Scenario Nothing Scenario 1 Scenario 2
GPU (%) 4% 40% 30%
CPU (%) 5% 96% 96 %
RAM (%) 12% 90% 90%
Temperature (◦C) 37.5 41 39

TABLE III: NVIDIA Jetson Nano performance.

V. CONCLUSION AND FUTURE WORK

Airborne Collision Avoidance Systems for unmanned plat-
forms (ACAS-Xu) is a promising solution for protection
against collision threats. In this work we proposed a DNN
based approach to approximate the classical cost table used to
provide resolution advisories. Furthermore, we embedded the
trained DNN on a NVIDIA Jetson Nano and showed through
simulations that the processing time can be significantly ac-
celerated using CUDA optimization.

Certifying edge AI devices to be integrated in flying avion-
ics is an important and challenging task. Our future works
lie on explanation and verification advisories provided by the
DNN.
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