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Abstract— Video streaming over wireless connections remains
a challenge today: even when data link and transport layer
protocols are tuned to avoid retransmissions and thus reduce
the delay and the used bandwidth, the impact on the perceived
video quality of imperfect and band-limited radio channels is
not negligible. This phenomenon is even more pronounced in
multi-hop ad-hoc networks, where the received video quality is
further reduced by a cascade of wireless transmissions causing
additional delay, losses and errors. We propose in this work to
enhance video streaming performance in ad-hoc networks by
introducing in mobile nodes an improved frame treatment at the
Data Link layer, associated to caching capabilities at the transport
layer. This approach allows, on the one side, the forwarding of
multimedia packets even in case of residual bit errors, which can
be tolerated by robust video decoders, and, on the other side, a
path reduction when multiple users are interested in the same
content.

I. INTRODUCTION

Streaming of video content has often been indicated as

a killer application for 3G wireless networks: even though

service popularity took longer than expected to build up among

end-users, the importance of video services is now testified by

the explosion of video offer for streaming and sharing over

the Internet and by the availability of applications to access

these videos from widespread smart-phones. The diffusion of

these applications on mass market portable devices has, as a

consequence, introduced the thirst for similar services in dif-

ferent class of users, stuck even nowadays to devices offering

basic communications. For instance, several organizations (i.e.,

rescue services, fire brigades, etc.) have shown an interest in

next generation portable radio posts allowing video streaming.

Besides the well-know problems for video distribution over

wireless channels, the support for multimedia transmissions

on ad-hoc networks introduces further challenges. In these

networks, where several hops and thus several wireless trans-

missions are necessary to reach the destination, the overall

probability of transmission errors is higher and the need

to save resources like bandwidth and battery is even more

pronounced than in structured wireless networks.

At the same time, it is known that multimedia applications

could be less sensitive than other applications to the trans-

mission errors introduced along the path. Indeed, applications

for audio and video data transmissions often use encoders that

tolerate some bit errors in the data and thus the reception of

an erroneous packet is preferred over a packet loss.
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In this paper, we propose to exploit the distinctive ro-

bustness of multimedia applications to limit their bandwidth

occupancy and to reduce the delay perceived by the client of

a multi-hop wireless communication. The idea is, on the one

hand, to avoid at the MAC layer unnecessary retransmissions

of packets affected by errors and, on the other hand, to

shorten the path necessary for content retrieval by introducing

proxying and caching capabilities at the Real-time Transport

Protocol (RTP) layer [1].

The rest of the paper is organized as follows. Work with a

similar approach and thus related to our study is presented

in Section II of this document. Section III overviews the

proposed solution, while Section IV and Section V present

the details of the P2ProxyLite approach and the modifications

of the concerned protocols. Section VI reports the performance

evaluation of the proposed scheme and Section VII concludes

this work.

II. RELATED WORK

The idea of transferring to the upper layer of the networking

stack packets carrying corrupted payloads is due to the ability

of audio, image and video decoders to absorb a residual error

probability. Indeed, these decoders apply masking techniques

based on the capability of human eyes and hears to “accept”

or compensate residual defects. Several examples could be

reported: the H.263 [2], H.264 [3], JPEG 2000 [4] standards

are based on this assumption. Moreover, errors or losses could

be corrected by introducing Forward Error Correction (FEC)

techniques at the transport or the application layer. Work on

this topic can be found in [5], [6], [7] and an IETF work-group

(FecFrame [8]) has been recently created.

This approach at the application layer has however to be

coupled with the support of lower layers: in the last years,

different protocols allowing to transfer to the upper layers

erroneous packets have appeared and became standard. In

order to avoid packet loss for few acceptable bit errors, these

protocols divide packets into sensitive and insensitive parts:

errors in the sensitive part should result in dropped packets,

while errors in the insensitive part should not. WiMAX [9],

for example, introduces a partial CRC at the data link layer,

limited to the frame header, thus allowing to transfer to the

network layer frames with errors in the payload. Similarly,

transport protocols like UDPLite [10] and DCCP [11] intro-

duce a partial checksum on transport layer segments, thus

allowing a verification of the integrity of the segment header



only or of a portion of the payload as well (e.g., the RTP

header).

Packet caching in the network has also recently received

a lot of attention: indeed, data caching can significantly

improve the efficiency of information access in wireless ad-hoc

networks by reducing the access latency and bandwidth usage.

In order to cope with frequent disconnections causing network

division in ad-hoc communications, [12] proposes to maintain

in every node a small buffer for caching data packets that pass

through it: when a downstream node encounters a forwarding

error, an upstream node, with the pertinent data in its buffer

and alternative route, can retransmit the data. Similarly, au-

thors of [13] propose to replicate data items on mobile hosts

to improve data accessibility. Work in [14] analyzes instead

the cache placement problem in order to minimize the total

data access cost in ad hoc networks with multiple data items

and nodes with limited memory capacity. Finally, Cache-and-

Forward, an architecture that addresses efficient mobile content

delivery, has been recently presented in [15]: assuming rapidly

decreasing storage costs, hop-by-hop opportunistic transport

with large in-network caching and content-aware routing is

proposed as a basic network functionality rather than overlay.

The novelty of the work presented here is to combine

caching mechanisms with the delivery of multimedia packets

with errors in the payload thus to exploit the robustness of

many audio and video decoders.

III. THE P2PROXYLITE APPROACH

In this work we consider an ad-hoc network composed by

m nodes where n < m mobile terminals (called clients in

the following) are interested in the same multimedia content.

This content is streamed from a node (called source) that

can be located more than one hop away. The different clients

thus independently contact the source which starts n different

transmissions of the same content. As a consequence, if one

or more clients share at least a portion of the path to the

source, the nodes along the common part of the path have

to route several times the same content, with a corresponding

waste of bandwidth. Moreover, even when paths are disjoint,

retransmissions of multimedia packets affected by few errors

are often useless, since errors can be usually concealed by the

decoders, and furthermore introduce an annoying delay.

We thus propose in this work to combine two different

axes of improvement: the calculation of the partial checksum

and the introduction of intelligent proxies. Our aim is to

improve the throughput of the video streaming, thus offering

the possibility to either increase the video quality given a fixed

bandwidth or to reduce the network capacity utilization given

a constant video quality.

A. An overview

The proposed solution is composed by the combination of

two approaches: partial checksum and data caching.

More in detail, we propose first to forward packets with

correct headers but corrupted payload to the next hop toward

the destination and to send them up to the application when the

destination is reached. The bandwidth occupancy could thus be

dramatically reduced by avoiding unnecessary retransmissions

if a robust decoder is available at the receiver side.

It may happen, however, that the forwarded corrupted pack-

ets are not decodable by some users (i.e., users without a robust

decoder) or that the error probability is high and the received

information is not sufficient for a robust multimedia decoder to

efficiently conceal the residual errors. P2ProxyLite nodes may

in this case contact upstreams nodes until finding an error-free

copy of the packet. We thus propose to store the multimedia

content along the path to increase the probability of an error-

free delivery. Moreover, correct packets may replace cached

corrupted ones along the path. Finally, the cached content can

be used to respond to new streaming requests, thus avoiding to

contact the original video source and reducing the path length.

In practice, every P2Proxylite node works on the ongoing

packets sent upstream and downstream to: i) associate each

packet to an identifier and detect eventual bit errors on header

or payload; ii) store the error status information and the packet

in a cache R at the RTP level; iii) forward it to the next hop

after a CRC recalculation; iv) intercept, analyze and forward

the new content requests toward the source if the desired

content is not locally cached or if the client has not been able

to decode a corrupted copy; send the stored content otherwise.

Each of these steps is accurately described in the following

sections.

Finally, it has also to be noticed that is not necessary that

all nodes implement the P2Proxylite functionalities: indeed, a

few enhanced nodes, acting as proxy in the ad-hoc network,

could be sufficient to reduce the number of retransmissions

and the number of hops. This system can thus be incrementally

deployable.

B. Forwarding of packets affected by errors

In this section we detail the additional steps carried on in the

P2Proxylite nodes to enable the forwarding of packets whose

payload is affected by errors:

• When a packet is received at the wireless interface, if the

node is not the final destination of the communication,

the headers integrity has to be verified. The forwarding

to the following hop will be done only if all the packet

headers (MAC, IP, transport and RTP) are error-free.

• When the received packet has a corrupted payload, if an

error-free copy has been previously received and cached

in R, the correct payload replaces the erroneous one and

is transmitted to the next hop. If not, the corrupted packet

will be forwarded to the next hop.

• At the Data Link layer, the CRC is recalculated before

the transmission, even for corrupted packets. In this way,

if the following node along the path does not implement

P2ProxyLite functionalities, the packet will not be dis-

carded unless further errors are introduced. The CRC

recalculation allows also to determine if errors have been

added in the last hop, as better explained in Section IV.

At the same time, since the CRC recalculation resets the

error memory, we propose to introduce a new field in the



Fig. 1. Flow-chart of additional Data Link functions

TABLE I

PktId: IDENTIFIER OF THE MULTIMEDIA FLOW AND PACKET

File ID Fragment ID Additional CRC error flag
info (optional)

8 bytes 4 bytes 6 bytes 1 bit

packet, called CRC error flag, to keep the history of packet

corruption, whose goal is threefold. First, by identifying error-

free packets we can replace a cached corrupted packet with a

correctly received one (or a corrupted received packet with

a correct cached one); second, it introduces the possibility

to forward also corrupted or only correct packets, depending

on the client willingness; third, it indicates to the decoder a

corrupted image reception and the need of a robust decoding

process. We propose to insert this information, together with a

content identifier, in the RTP extension header, introduced by

setting the RTP Extension Bit to 1. The packet identification

has to be unique and has to represent first the multimedia flow

and then the packet in the flow. A possible format for the

identifier, called PktId, is presented in Table I: the File Id

could be obtained by hashing on the source channel in case of

live streaming or on the file name in case of Video On Demand

(VoD) (e.g., with algorithm MD5 on 64 or 128 bits [16]); the

Fragment ID identifies the fragment in the file; the additional

fragment information field is optional and could be used to

indicate eventual operations done on the fragment (FEC, CRC

type,...); finally, the CRC error flag is used to indicate if the

payload is correct or corrupted.

The use of header compression mechanisms (e.g. RoHC

[17]) could be envisaged to cope with the additional overhead

introduced by the extension of the RTP header.

C. Path shortening via caching in intermediate nodes

Every time a packet is received on the wireless interface, a

copy of the packet is transferred to the upper layer for storage

in a cache at the RTP layer. The identifier of the packet is

included in the RTP header, whose integrity can be verified

by opportunely tuning the checksum coverage of transport

layer protocols like DCCP et UDPLite: for this reason, the

packets arriving at the RTP layer (and thus not discarded at

the lower layers) carry a correct content identifier. RTP thus

stores in the cache R for a time TR the packet and its identifier,

together with an identifier of the client (e.g., destination IP

address and port number). Caching time may be short in case

of live-streaming/interactive applications or long in case of

VoD services. The effect of this parameter on data topicality

will be subject of further study.

We additionally propose to intercept all the Real Time

Streaming Control (RTSP) [18] commands, which are used to

require, start and stop a streaming session. When a streaming

request is received at the Data Link layer, the packet is sent to

the session layer, in charge of handling the streaming sessions.

The session layer then compares the received request with

the identifiers of the stored packets. If the desired content

is not available, the request is routed to the source. If the

content is available but the cached copy is affected by errors,

the P2ProxyLite node compares the identifier of the source of

the new request with the list of the identifiers of the previous

clients: if the client identifier is in the list, a copy of that data

has already been sent to that user. However, since the client

is requesting the content again, it may not have been able

to benefit from that transmission of data with errors in the

payload: in this case, the request is routed toward the source,

aiming at increasing the probability to deliver a correct copy

of the multimedia content. Finally, if an error-free copy is

cached (or if the P2ProxyLite node has not tried to forward

that corrupted packet before), it directly responds with the

stored content, thus avoiding to route the request toward the

source.

IV. DATA LINK MODIFICATIONS

The flow chart of the additional operations required at the

data link layer is reported in Figure 1.

When a data frame is received at the Data Link layer,

the content identifier PktId, included in the RTP layer, is

extracted and used to identify the received frame. This frame

is stored in a cache C for a time TC (corresponding to the time

needed for integrity checks and cache R access operations): it

will be removed from C and forwarded to the next hop after

a verification of the headers integrity or it will be discarded

at the expiration of TC .

The CRC computed on the whole packet is then compared

to the CRC included in the packet header: if they do not match,

one or more bit errors affected the packet in the last hop and

a verification of network, transport and RTP headers integrity

is necessary. A request for this verification (e.g., VER REQ

message) is sent via a control interface to the RTP layer.



Fig. 2. Flow-chart of additional RTP functions

Conversely, if the computed CRC corresponds to the value

included in the header, no errors have been introduced in

the last hop and the status of the packet is unchanged

from the previous hop (i.e., from the value reported in the

CRC error flag). If the CRC error flag is equal to zero, no

errors have been introduced along the path and the multimedia

content is correct: the packet can thus be extracted from

the cache C and queued for transmission to the next hop.

Otherwise, the header is error free but the payload is affected

by bit errors. In this case, a VER REQ message is sent to

the RTP layer even if the status of the packet is known:

this allows to check if an error-free copy of that payload

is cached at the RTP layer. The information on the packet

status (i.e., RX ERR IND) is also sent to the RTP layer in the

RX INFO INDICATION message, since we assume that the

transport layer checksum verifies only the packet header.

The response to the verification request (i.e., the VER RESP

control message) - whose reception is not sketched in Figure 1

for sake of simplicity - may or not include a packet payload.

If the control message does carry a packet payload, then an

error-free copy has been previously cached in R and can

replace the packet with errors: the payload included in the

VER RESP message is queued for transmission. Otherwise,

no error-free copy is available: the packet temporarily stored

in C is extracted, its CRC error flag is set to one and queued

for transmission.

V. RTP MODIFICATIONS

At the RTP layer, the information carried by VER REQ or

RX ERR IND control messages is associated to the packet

and cached as shown in Figure 2: the verification request is

associated to the PktId in the first case while the packet

integrity value is stored in the second case.

When a data packet is received, the RTP layer verifies if a

copy of that packet is stored in R.

If the packet is received for the first time (i.e., Pk-

tId.DATA==NULL) or if a corrupted copy is cached (i.e., Pk-

tId.DATA!=NULL and PktId.ERROR==1), the received packet

is stored in R and the ERROR indication is set to the value

received in the RX ERR IND message. If a verification has

been required by the Data Link layer and the packet has been

received by the RTP module (i.e., it has not been discarded by

the transport layer), a VER RESP message without payload is

transmitted to the Data Link layer: this message indicates that

there are no errors in the packet header but that no error-free

copy of the payload is available.

Conversely, if a correct copy of the packet is cached, the

received packet is discarded and, if a verification is needed,

a VER RESP message, carrying the error-free data packet, is

transmitted to the Data Link layer.

The identifier of the client is finally associated to the content

identifier, to maintain for a short time a list of the clients

receiving a corrupted content: this information will be used

to decide if a new request for the same content has to be

forwarded to the source, as explained in Section III-C.

VI. SIMULATION RESULTS

In the following, we present the performance evaluation

related to the two main P2ProxyLite functionalities.

To evaluate the gain derived from the path reduction asso-

ciated to the caching function, we assume that two different

clients C1 and C2 request at different times (C1 before C2)

the same multimedia content to the source S, which is reached

via a multi-hop transmission. Let be c1 and c2 the number of

hops between the node S and the nodes C1 and C2 respectively

and p the number of hops that the two multi-hop paths have in

common (i.e., the hops from the source to the last P2ProxyLite

node P in common to the two paths), like depicted in Figure 3.

It follows that, to verify the condition of p hops in common

and of C1 6= C2, we have c1 ≥ p while c2 > p.

Without proxy functions, the transmission of each multime-

dia packet toward C1 and C2 requires a total of N = c1 + c2
hops. With the proxy function, the number of hops for the

transmission toward C1 is again c1, while the number of hops

for the transmission toward C2 is c2−p, since node P cached

the stream for node C1 and directly responds to C2 with the

desired content. The resulting gain in terms of path reduction

is thus G =
p

c1+c2
.

Figure 4 shows the gain G for a maximum distance of 30

hops to the source S. The gain is plotted as a function of



Fig. 3. Considered scenario for P2ProxyLite evaluation
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the hops p in common to c1 and c2 and for all the different

combinations of c1 and c2 (represented by circles in the figure)

satisfying the conditions p ≤ c1 ≤ 30 and p < c2 ≤ 30. The

average gain, indicated by the solid line in the figure, varies

between 5.5% and 27% for p ranging from 1 to 10. For greater

values of p such as 30 common hops, the average gain attains

even 50%.

The performance of the video streaming is evaluated with

a simulation framework based on OMNeT++ [19]. This tool

simulates the transmission (with video bits actually generated

and sent) of a precoded H264/AVC video and accurately

models all the OSI layers from the application to the Data

Link layer, while a simplified model of the physical layer is

introduced.

The video streaming is started and controlled by RTSP

which allows the end-user to request the desired content (the

reference CIF Foreman sequence @30 Hz in the simulation).

When the streaming is activated, the application layer at the

source side transmits the images extracted from the precoded

video. At the client side, a robust decoder transforms the

received H264 frame into an uncompressed yuv video frame

which is then displayed. Below the application layer, RTP

fragments each image into packets and handles the image

reconstruction at the receiver side. At the transport and net-

work layers, the UDPLite transport protocol and IPv6 are used

respectively. At the Data Link layer, a basic IEEE 802.11g

MAC protocol is simulated, while data are transmitted at the

physical layer with a data rate of 6 Mbps. An AWGN channel
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model, introducing random bit errors, is used to represent the

effects of the radio channel on the wireless transmission.

Figure 5 reports the average throughput at the application

layer as a function of the per hop bit error probability, for three

different distances between the source and the client (i.e., 2,

4 and 6 hops respectively). We can observe that, as expected,

the throughput decreases when the error probability per hop

or the number of hops increase. The throughput reduction is

objectively smoother in the P2ProxyLite case, since packets

are discarded only when affected by errors on the header.

Conversely, in the reference case the corrupted packets are not

forwarded, thus dramatically reducing the number of received

packets. We can observe that for 4 or 6 hops, even with a

per hop bit error probability lower than 10−4, the throughput

is zero in the reference case since packets are discarded with

very high probability in one of the nodes along the path.

In Figure 6 we report the time elapsed between the reception

of two consecutive video frames at the client side, as a function

of the bit error probability and of the number of hops. In the

reference scenario, the inter-frame time increases rapidly with

the error probability since many packets, necessary to recreate

the video frame, are discarded along the path. The inter-frame

time remains instead constant with the P2ProxyLite approach.

Beside those statistics, we can evaluate the video quality as
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all the bits of the compressed video have been generated and

transmitted. By reconstructing the video at the receiver side

image after image, we derive the Peak Signal to Noise Ratio

(PSNR), a classical objective measure of the video quality

computed by comparing the original video with the received

one. The upper part of Figure 7 reports the variation of the

PSNR as a function of the streaming time, for a bit error

probability of 10−6 and 4 hops, in two cases: the reference

(dashed line) and the P2ProxyLite (solid line) realisations

respectively. Moreover, to better illustrate the difference, we

present as an example snapshots of the images decoded in

the reference and optimized cases for the frame number 144,

transmitted at t = 21.5s and identified by a vertical line

in the upper figure. Figure 7 allows thus at the same time

an objective and a subjective evaluation of the video quality.

In the two representations, we notice an actual improvement

achieved with the P2ProxyLite solution.

Finally, we plot in Figure 8 the average PSNR as a function

of the error probability and of the number of hops. We can

notice that the trend observed in Figure 5 and Figure 6 is

reflected also by the average PSNR: the P2ProxyLite approach

offers a gain between 5 and 15 dB, depending on the number of

hops and the bit error probability, thus significantly increasing

the perceived video quality.

VII. CONCLUSION

This work presented a combined approach to improve the

efficiency and the quality of video streaming in ad-hoc net-

works based on the enhancement of Data Link and RTP layer

functionalities. By decreasing the number of retransmissions

and by introducing caching mechanisms in enhanced nodes,

the proposed scheme allows, from the one side, to reduce the

delay of video streaming and to increase the final PSNR and,

from the other side, to speed up the access to a multimedia

content of interest for two or more clients. Results, achieved

with a complete system simulator modeling the transmission

of real video content over a full networking stack, confirm the

gain introduced by the proposed solution in terms of delay,

throughput and video quality perceived by the clients.
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