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ABSTRACT

Widely used in data compression schemes, where they allow
to reduce the length of the transmitted bistream, variable-
length codes (VLCs) are very sensitive to channel noise. In
fact, when some bits are altered by the channel, synchro-
nisation losses can occur at the receiver, possibly leading
to dramatic symbol error rates. The key point is to appro-
priately use the residual source redundancy at the decoding
side, for instance by considering it as an implicit channel
protection that can be exploited to provide error correction
capability. We propose in this paper a soft-input soft-output
low complexity VLC decoding algorithm. Combined with
a convolutional code SISO decoder, this new Soft Output
Stack Algorithm (SOSA) is used in an iterative joint de-
coder and simulations results over an Additive White Gaus-
sian Noise (AWGN) channel are shown.

1. INTRODUCTION

Providing highly compressed sources that make the trans-
mission bandwidth-efficient, VLCs are widely used in data
compression schemes even though they generate bitstreams
very sensitive to channel perturbations. To cope with this
phenomenon, some introduced modified VLCs such as self-
synchronising Huffman codes [1], reversible VLCs [2], pro-
posed to re-introduce redundancy in the bitstream by insert-
ing an error correcting code [3] in the chain or by conjuging
error detection capacity and arithmetic coding [4].

As shown by several authors [3, 5], the key point is to
appropriately use the residual source redundancy at the de-
coding side. This redundancy can be considered as an im-
plicit channel protection by the decoder, and be exploited as
such to provide error correction capability of the variable-
length coded source. The optimal VLC decoder acts, then,
as an estimator of the transmitted information by select-
ing the sequence according to the Maximum A Posteriori
(MAP) criterion. The improvement achieved when com-
pared to classical hard decoding is significant [3, 6, 7, 8,
9], and recent works showed that low-complexity approx-
imate MAP decoders could be used, that provide perfor-
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mance similar to all existing soft decoding algorithms while
exhibiting a complexity close to the hard decoding case [10].

We propose in this paper a SISO low complexity VLC
decoding algorithm relying on the hard output sequential
algorithm presented in [10]. This new Soft Output Stack
Algorithm (SOSA) is then combined with a classical convo-
lutional code SISO in an iterative joint decoder, following
the approaches introduced in [11, 12, 13].

This paper is organised as follows. Section 2 introduces
the variable-length codes model and describes the VLC tree
structure. In Section 3 is proposed a soft-output version of
the stack algorithm given in [10], with two possible soft out-
puts generation methods. Performance for this new stack
algorithm are then given in Section 4, where it is inserted
in a joint iterative decoder for concatenated convolutional
and variable-length codes. Simulation results are given and
finally some conclusions are drawn.

2. NOTATIONS AND MODEL FOR SOFT-INPUT
SOFT-OUTPUT VLC DECODING ALGORITHMS

Let us consider the system model presented in Figure 1,
where the VLC is assumed to be binary and tree structured.
A symbol sequence of lengthR, s[1 : R], is mapped to a
binary sequence of lengthT , x[1 : T ], by following the rule
edicted by the VLC table of sizeK. This sequence is BPSK
modulated, transmitted over an AWGN channel and demod-
ulated at the receiver side. The received sequence,y[1 : T ],
is decoded by a soft input VLC decoder which computes a
soft output in the form of the loga posterioriratioΛ(x[t]):

Λ(x[t]) = log
P (x[t] = 1|y[1 : T ])
P (x[t] = 0|y[1 : T ])

for 1 ≤ t ≤ T, (1)

and a hard bit estimate sequence,x̂[1 : T ] or a hard symbol
estimate sequencês[1 : R].

As every SISO decoder, the VLC SISO decoder will de-
rive the reliability information on bitsΛ(x[t]) by taking into
account anya priori knowledge it has on the VLC encoder.
In our case, thea priori knowledge will consist of the VLC
tree structure, the occurrence probabilities of the symbols
and any other source side information, such as possibly the
concerned sequence number of symbols.
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Fig. 1. VLC encoding and decoding system model.

Let describe the VLC tree with the following notations,
as illustrated in Figure 2 for codeC11 defined by Table 1:

• Sj : thejth symbol in the VLC table,1 ≤ j ≤ K,

• Ij : thejth intermediate node,1 ≤ j ≤ L,

• Np,= {I1, . . . , IL, S1, . . . , SK}, the set of nodes hav-
ing a predecessor,

• pt(l) (l ∈ Np): thea priori probability of the branch
reaching the nodel at timet.

Probability C11

S1 0.33 00
S2 0.30 01
S3 0.18 11
S4 0.10 100
S5 0.09 101
Average length 2.19

Table 1. VLC codeC11, taken from [14].
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Fig. 2. VLC tree representation.

3. A SOFT-INPUT SOFT-OUTPUT STACK
ALGORITHM

Even though MAP algorithms provide very good results in
terms of error correction, they happen to be fairly complex,
as they imply to look through the whole tree in both ways
(forward and backward). Stack algorithms on the other hand
are much simpler and yet can reach similar performance,
as shown in [10][15]. They are however primarily symbol-
level decoding algorithms, hence must be adapted to pro-
vide reliability information on bits.

Our new algorithm proceeds in two main steps: first,
decoding part estimates the transmitted VLC sequence, and
second a post-processing derives the soft values. The con-
sidered post-processing operation reveals itself much less
complex than the one proposed in [16] and provides soft
values more relevant than those obtained using the post-
processing proposed in [17] for an equivalent complexity.

3.1. A bit level VLC stack decoder

The first step in the algorithm consists in applying a classi-
cal stack algorithm [18] on the “huge” tree formed by con-
catenating several times the considered Huffman tree until
the number of bits and the number of symbols of the con-
sidered sequence is reached.

As sequential VLC decoding algorithms compare bit se-
quences of different lengths, a specific metric must be used.
For each nodel in the setNp, we define the metric associ-
ated to the branch leading to this node at timet by adapting
the metric proposed in [10]:

m(l, y[t])=− log P (y[t]|v(l))−log pt(l)+log P0(y[t]) (2)

where the three terms appearing in the metric stand respec-
tively for the symbol likelihood at nodel, thea priori proba-
bility on the considered branch and the metricP0 introduced
by Fano and Massey for sequential variable length decod-
ing. In practice, the termpt(l) is for simplicity reasons be
approximated by thea priori probability of the branchp(l),
which can be directly obtained as explained in [19] from the
tree representation of the VLC table and the codeword prob-
abilities which are assumed to be known by the decoder.
The algorithm different steps are as follows:

1. Create thetree by defining relations betweennodes
computing thea priori probabilityp(l) associated with
each branch.

2. Initialize the stack by placing the initial node (O) with
metric0 in the stack.

3. Compute the metric of the succeeding branches of last
node of the top path. If an extended path reaches a
symbol node, increment the number of symbols asso-
ciated to this path. Delete the top path from the stack
and insert the extended paths in the stack.



4. Select the new top pathi.e. the path of the stack hav-
ing the smallest cumulative metric. If the last node of
this path corresponds to a symbol node, use the origin
nodeO as new starting state.

5. Test if stop conditions are verified: the top path con-
tains the number of bits and the number of symbols of
the original sequence. If stop conditions are verified,
continue to step 6. Otherwise, return to step 3.

6. Derive soft output values from cumulative metrics of
considered paths in the previous processing and stored
in the stack.

3.2. Soft outputs generation

Once the sequential decoding process is finished, the post-
processing can take place to generate soft outputs. These
soft outputs will be derived from the paths that have been
examined and stored by the stack decoding algorithm.

Let {P1, . . . , Pr} denote the set ofr examined paths
stored in the stack. A given pathPi (1 ≤ i ≤ r) is charac-
terised by a length in bitTPi , a cumulative metricµPi and
a sequence of bits{x̂Pi [1], . . . , x̂Pi [TPi ]}. We propose two
different possible solutions for deriving the soft outputs.
Solution 1
Inspired by the bidirectional Soft-Output Viterbi Algorithm
(SOVA) presented in [20], this first solution consists in ap-
proximating the log-likelihood ratioΛ(x[t]) by

Λ(x[t]) ' µ(t, 0)− µ(t, 1), (3)

whereµ(t, 1) (resp. µ(t, 0)) is the minimum path metric
for all the paths in the stack for which thetth estimated bit
is 1 (resp. 0). As in the bidirectionnal SOVA, ifP ? is the
path selected by the decoding process, then ifx̂P ? [t] = i
(i = {0, 1}), we haveµ(t, i) = µP ? .
Solution 2
In this second solution, all the metrics in the paths stored
by the stack algorithm and not only the best paths for both
values0 and1 for tth estimated bit are taken into account.
The log-likelihood ratioΛ(x[t]) is hence approximated by

Λ(x[t]) ' log
( ∑

1≤i≤r
TPi

>=t

x̂Pi
[t]=1

e−µPi /
∑

1≤i≤r
TPi

>=t

x̂Pi
[t]=0

e−µPi

)
. (4)

4. ITERATIVE JOINT DECODING FOR
CONCATENATED CC AND VLC CODES

4.1. Joint decoder principle

To validate Section 3 algorithms, let us consider the com-
munication system presented in Figure 3. The transmitter
consists first of a VLC source which outputs random VLC

symbols according to the chosen VLC codewords probabil-
ities. Grouped into packets ofR symbols, these symbols are
mapped to aT -bit VLC sequencex[1 : T ] by the VLC en-
coder. The size of this resulting sequence in bits is a source
side information (SSI) supposed known at the receiver side.
Each sequence is then permuted by a pseudo-random inter-
leaverΠ. Note that as the packet size is different for each
sequence, a new interleaver must be used (and generated)
for each packet. The interleaved sequencex̃[1 : T ] is given
as input to a systematic convolutional encoder. The coded
sequencev[1 : T ∗ n/k] at the output of this CC encoder
is punctured in order to attain the wished transmission rate,
modulated by a BPSK modulator and transmitted over an
AWGN with varianceσ2.
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Fig. 3. Transmission chain for joint decoding.

At the receiver side, the sequence is demodulated and
depunctured. The depunctured sequencez[1 : T ∗ n/k] is
then decoded by the iterative decoder proposed in Figure 4.
The iterative decoding process takes place as follows: at the
rth iteration, the CC decoder’s input consists of the depunc-
tured sequencez[1 : T ∗ n/k] and thea priori probabilities
ratioΦ(r−1)[1 : T ] of the interleaved sequencex̃[1 : T ] ob-
tained at previous iteration. The CC decoder provides the
Λ̃(r)

C [1 : T ] output sequence. At this samerth iteration,
the VLC decoder takes as input the observation sequence
y(r)[1 : T ] derived of the CC decoder output sequence, the
a priori probabilities of VLC symbols as well as any other
available Source Side Information (SSI) and provides the
Λ(r)

V [1 : T ] output sequence.
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Fig. 4. Proposed iterative decoder.

In order that each decoder takes advantage of the it-
erative process [21], independent information must be ex-
changed between the two decoders, that is the so-calledex-



trinsic information. We thus defineE(r)
C [t] andE

(r)
V [t] the

extrinsic information about the bitt provided respectively
by the CC decoder and by the VLC decoder.

For r ≥ 1, E
(r)
C [t] = Λ(r)

C [t]− E
(r−1)
V [t], (5)

E
(r)
V [t] = Λ(r)

V [t]− E
(r)
C [t], (6)

whereE
(O)
V [t] is set equal to zero.

The CC extrinsic informationE(r)
C [1 : T ] sequence scaled

by σ2/2 [20] is used as observation for therth iteration of
VLC decoder,

y(r)[t] =
σ2

2
E

(r)
C [t]. (7)

and the interleaved VLC extrinsic informatioñE(r)
V [1 : T ]

is used asa priori probability ratio estimate for ther + 1th

iteration of the CC decoder,

Φ(r)[t] = Ẽ
(r)
V [1 : T ]. (8)

4.2. Numerical results

Let us first assess the SOSA algorithm efficiency in the con-
text of short VLCs. Considering that it has perfect knowl-
edge of the number of symbols, we will compare its perfor-
mance with the one of a maximuma posterioridecoding of
VLC codes with exactapriori knowledge (denoted KMAP
algorithm) on the number of symbols by frame. This KMAP
algorithm and the two versions SOSA1 and SOSA2 (with
respectively solution 1 and 2 for soft outputs derivation) are
used to study the performance of concatenated CC+VLC
schemes in the joint iterative decoding scheme described in
previous Section. In each case, the simulation characteris-
tics follow these guidelines:

• 100 source symbols sequences are generated, and map-
ped into bits according to the occurence probabilities
defined by the VLC table given in Table 2,

• pseudo-random (de-)interleaving is used between the
VLC and CC (de)en-coders,

• the optimal distance profile systematic convolutional
codeCCA [18] is used: rate1/2, generators [40, 73],
memorym = 5, minimal distanced = 6,

• BPSK modulation is used over the AWGN channel.

Considering that the chosen VLC code is not an opti-
mised Huffmann one, but was selected for its minimal Ham-
ming distance [15] equal to2 between each couple of code-
words, a puncturing of rateR = 8/9 was applied to allow
for fair comparison with standard VLC compression (e.g.
with the code given in Table 1).
Figure 5 first illustrates the performance of both SOSAs.
The two different solutions proposed in Section 3 appear to
be roughly equivalent, with perhaps a very small advantage

Probability Symbols
S1 0.33 00
S2 0.30 11
S3 0.18 010
S4 0.10 101
S5 0.09 0110
Average length 2.47

Table 2. short VLC code used in the simulations.
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Fig. 5. Performance at VLC decoder output for various iter-
ations with SOSA1 and SOSA2 algorithms (stack size=20).
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Fig. 6. Performance of the SOSA2 algorithm for various
stack sizes and various iterations at the VLC decoder output.

to SOSA2, that was consequently used for the rest of the
tests. Figure 6 shows the influence of the stack size in SOSA
algorithm, where it can be seen that some gain is achieved
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Fig. 7. Performance comparison of KMAP and SOSA2
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when using a stack of maximal size100 when compared
with a stack size of20. The induced complexity may how-
ever be a limiting factor. Finally, Figure 7 shows a perfor-
mance comparison between the KMAP and the SOSA2 al-
gorithms. As foreseen by previous studies on hard outputs
versions of these algorithms [10], both perform similarly
for the first iteration. After four iterations, the gain of about
0.8 dB obtained with KMAP algorithm for FER=10−3 is
not completely reached with SOSA2 algorithm, which only
provides about0.3 dB of gain. Replacing the SISO VLC de-
coder in the chain by a classical hard VLC decoder (hence
without iterating), we find that the gain provided by the it-
eration process is of about1.2 dB for FER=2.10−3, which
is far from being negligible. Finally, comparing the evolu-
tion of the iterations for both KMAP and SOSA2 solutions,
and noting that with SOSA2 mainly gains with the second
iteration, a possible interpretation may be that the difference
may come from the SOSA soft outputs quality.

Let now consider the case of larger VLCs, such as the
one used in the MPEG-4 standard, whose statistics are given
in Table 3. As a MAP decoding solution complexity is
prohibitive for such large codes, only SOSA2 solution is
considered here. Figure 8 presents the respective perfor-
mance of this large VLC code with two different convolu-
tional codes. The first one, denoted by chain A, uses con-
volutional codeCCA, and the second one, denoted chain B
contains the more complex convolutional codeCCB of rate
1/2, generators [4000, 7154], memorym = 9 and minimal
distanced = 8. Gains of about0.3 dB can be observed in
both cases, and the interest of using a powerful inner code
in the serial concatenation is obvious.
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Fig. 8. Performance for vairous iterations and two different
CC codes concatenated withV LCMPEG−4 code (SOSA2,
stack size=20).

Length Number of symbols Source statistics
4 2 0.125254
5 2 0.062622
6 6 0.031311
7 6 0.015656
8 20 0.007828
9 17 0.003914
10 27 0.001957
11 44 0.000978
12 28 0.000489
13 24 0.000245
14 32 0.000122

6.5615 Average length

Table 3. Statistics of theV LCMPEG4 code.

5. CONCLUSIONS

A new soft-input soft-output stack VLC decoding algorithm
was introduced, that is based on the simplified stack VLC
decoding algorithm introduced in [10]. This SISO algo-
rithm allows the use of iterative decoding for concatenated
schemes with VLC codes. While much less complex than
MAP-based ones, our Soft Output Stack Algorithm (SOSA)
was shown to take advantage of the iterative process, both
for short and large VLCs, and to be less efficient than MAP-
based algorithms by only0.5 dB in a short VLC context.
This small loss may be due to the insufficient quality of the
soft outputs generated, which contrarily to the MAP case
are by construction not evaluated by taking into account all
possible metrics in the tree.
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