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OMNeT++ based cross-layer simulator for content
transmission over wireless ad hoc networks

R. Massin, C. Lamy-Bergot, C. J. Le Martret and R. Fracchia

Abstract— Flexbility and deployment simplicity are among
the numerous advantages of wireless links when compared to
standard wired communications. However, challenges do re-
main high for wireless communications, in particular due to
the wireless medium inherent unreliability, and to the desired
flexibility, which entails complex protocol procedures. In that
context simulation is an important tool to understand and design
the protocols that manage the wireless networks. This paper
introduces a new simulation framework based on the OMNeT++
simulator [1] whose goal is to enable the study of data and
multimedia content transmission over hybrid wired/wireless ad
hoc networks, as well as the design of innovative radio access
schemes. To achieve this goal, the complete protocol stack from
the application to the physical layer is simulated, and the real
bits and bytes of the messages transferred on the radio channel
are exchanged. To ensure that this framework is reusable and
extensible in future studies and projects, a modular software
and protocol architecture has been defined. Although still in
progress, our work has already provided some valuable results
concerning cross layer HARQ/MAC protocol performance and
video transmission over the wireless channel, as illustrated by
results examples.

Keywords—Simulation, wireless, ad hoc, radio access,
video, cross-layer.

I. INTRODUCTION

The recent years have seen the explosion of new wireless
networking solutions design and corresponding first deploy-
ments in real life. Those systems, taking advantage of the
mobile devices and computers ever increasing capabilities,
are becoming more and more complex, as can be seen by
comparing the recently standardized WiMAX [2] with its WiFi
ancestor [3]. One of the reasons for the aforementioned com-
plexity increase is the apparition of cross-layer and cooperative
design instead of the previously strictly separated Open Sys-
tem Interconnection (OSI) reference model layers definition.
It follows that the use of monolithic C code simulation is no
longer well suited to the evaluation of new waveform designs
encompassing several research domains and layers. Cross-
layer simulation in particular, either considered for intelligent
Data Link and PHY co-design [4] [5] or for a more general
complete cross-layer design [6], naturally entails the usage
of complex simulation systems, which offer the capability to
jointly optimize several modules of the complex transmission
scheme.

Different works have shown recently, e.g. [7], the number
and variety of system simulators, as well as their evolution
and growing usage. The purpose of our work is thus not
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to define or develop a new simulator that would eventually
be better attuned to our specific goals, but to develop a
generic framework over an existing simulation tool. Indeed,
the development of a new simulator would require a complete
system design and would raise the difficult question of system
maintenance. The viability of such tools, as for instance
YANS [8], is dubious if the users community is not strong
enough to maintain and let them coherently evolving with
the research state-of-the-art. Along the lines of the Mobility
Framework [4], we have developed a generic framework built
on the OMNeT++ simulation tool only using its most basic
and generic features (e.g. discrete event scheduling) and simple
and easily re-usable C/C++ code implementation. We have
made this choice to ensure that this framework completely fits
our purpose, i.e. the establishment of a generic architecture
to simulate transmission of data and multimedia content over
hybrid wired/wireless ad hoc networks and the design of
innovative radio access schemes. Thanks to this approach,
that was used in parallel for the two independent projects
DITEMOI [9] and RISC [10] of the French National Research
Agency (ANR), the integration of a complete radio access
layer with the peer-to-peer oriented video data transmission
solution could be merged and jointly exploited.

This paper is organized as follows. Section II presents the
design principles established for the simulation chain realiza-
tion, including the overall protocol architecture and examples
of interfaces. Section III details specific realizations done to
ensure the feasibility of high fidelity simulations when dealing
with cross-layering solutions for wireless ad hoc networks.
Section IV presents some examples of the experimental results
that can be obtained with this framework, while explaining
their interest and possible usage for real systems definition.
Finally, conclusions are drawn in Section V.

II. SIMULATION CHAIN PRINCIPLE AND DESIGN

A. High-fidelity simulations with OMNeT++

As said before, we consider in this paper the event-driven
discrete time simulation tool OMNeT++ as our reference
framework. Nevertheless, the approach proposed could be
easily extended to other comparable tools such as OPNET
[11] or even NS-2 [12].

OMNeT++ has two main characteristics that allow to design
the models used to validate network communication protocols
in an efficient and cost reasonable way. The first one is
its capability to allow an easy definition, through text files,
of protocol architecture and information exchange between
protocol layers. The second and most important aspect is
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that it handles each event in sequence and maintains its own
simulated time clock. This clock is only updated at the end
of all the treatments associated to the events to be handled at
the current time. This property is of great interest in complex
systems simulation, as it allows to remove all problems related
to real time and synchronization constraints.

Nevertheless, the classical approach of OSI layers separate
design, reinforced by the specialization of most researchers
on a part of the protocol stack, has led to define frameworks
for OMNeT++ that enter in deep details for given layers,
while making strong assumptions for the other ones. This is
especially true for higher (e.g. application) and lower (e.g.
physical) layers. Particularly, it can be observed that, even if
this is evolving [5] [13], standard existing frameworks over
OMNeT++ [4] [14] rely on a quite simple abstraction of the
physical layer. It is usual to estimate packet error rate after
channel decoding by simply drawing a random variable. We
believe that building up an efficient cross-layer design enabled
data link layer over such a simplified physical layer model
leads in practice to questionable results. Indeed, due to the
high number of variable parameters such as received power,
number of interfering signals, multipath, etc. such a simulator
is not adapted to perform detailed and reliable simulations.

Simulations allowing to obtain such fine detail level are con-
ventionally referred to as High-Fidelity Simulation (HFS) [7].
The HFS approach is necessary to assess the performance of
communication systems designed in a cross-layer way that
may encompass the whole protocol stack from the application
layer to the physical layer. As a matter of fact, when simulating
end-to-end systems that may include wireless relay nodes such
as in ad hoc networks, precise and realistic simulation of the
numerous mechanisms derived to enhance the link reliability
must be performed, in particular to determine how their effects
can be combined and what is their joint gain. Indeed, mecha-
nisms such as Hybrid Automatic Repeat Request (HARQ) [15]
at the data link layer or TCP at the transport layer share the
same goal of combating losses or errors occuring in the net-
work. They both use similar techniques of retransmission, and
consequently do not satisfy the independence conditions that
would allow to separately add their gains. Furthermore, when
considering the transmission of multimedia data [16][17], in
particular over unreliable protocols such as UDP or UDP-
Lite, the resilience of advanced decoders can be used to
overcome remaining errors or losses thanks to concealment.
For such applications, where codecs are operating on real data
bit strings and can tolerate some errors or small packet losses,
modeling the system at high level is limitative. Typically, this
approach will lead to obtain only capacity evaluations but no
actual quality measurements, as in [18]. The unequal relative
importance of different portions of the multimedia bitstream
also justifies an HFS approach, to ensure that the measured
perceived quality of service (PQoS) at the application level is
representative. This is even more critical when mechanisms
at higher layers behave according to the information coming
from lower layers, such as the packet error rate at transport
level, the channel state information [6], the perceived effect of
the interference for link adaptation, or spectrum aware routing
as in the Cognitive Radio paradigm [19].

In the following, we explain how we have implemented an
HFS simulation with OMNeT++, modeling each layer in detail
by working at bit level, as described in Section III-A.

B. Protocol stack organisation

Fig. 1 depicts the overall protocol architecture that is con-
sidered in this paper. Our objective being to define a generic ad
hoc architecture with multiple nodes that would be used in a
global simulation, we have defined two levels of components:

• global components, which allow to drive the simulation
and have global knowledge about the whole network. The
first one is the connectivity manager which determines,
for each node of the network, the nodes in its range.
The other one is the radio channel manager in charge of
determining channel effects (see Section III-B.2);

• local components, which are the protocol entities within
the network node. Each such node may be either a base
station, a mobile station or even a data server.
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Fig. 1. Overall protocol architecture.

To accurately simulate the transmission of data and mul-
timedia content, the node model covers five of the seven
layers of the OSI reference model, having all the same generic
format. However, the nodes can be specified separately (i.e.
given specific protocols capabilities) in particular via the usage
of OMNeT++ specific initialization parameters. Typically,
multimedia source and receiver nodes will be able to use RTSP
requests for RTP encapsulated video data transmission over
UDP(-Lite)/IP sockets while data source and receiver nodes
may use TCP/IP sockets. Similarly, Robust Header Compres-
sion (RoHC) or specific Segmentation and Reassembly (SAR)
layers can be selected when needed. Finally, as in [20] a
transverse module, denoted XLI for cross-layer interface, has
been introduced in each node of the system to allow the joint
optimization of several layers.

This approach follows the recent trend showing that the
traditional separate decoding of source and channel codes can
be efficiently replaced by overall end-to-end optimization [21].

C. Interfaces

Generic interfaces to exchange information across the pro-
tocol stack have been defined.
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1) Data path: From application to physical layer, each pro-
tocol entity receive data messages from their upper interface
and forward them to their lower interface. In a way similar
to what is done in the Mobility Framework [4] a software
API (Application Programming Interface) has been defined to
send and receive information on the data path: sendDown() and
sendUp() are used to send data to the lower and upper layers,
and handleLowerMsg() and handleUpperMsg() are used to
receive data from the lower and upper layers.

What is particular in the proposed framework is that on
the data path, the bits and bytes of the messages are really
transmitted, as detailed in section III-A.

2) Control information exchange: Cross-layer optimiza-
tions are made possible through exchange of signaling infor-
mation along the protocol stack. In our framework this is done
through the XLI, which can be seen as a message switch en-
abling communication between all layers on the same network
host: ControlMessage messages are sent to the XLI from one
source layer and forwarded by the XLI to the destination layer.
All possible destinations are identified by a unique number to
allow XLI operation. This scheme allows any protocol layer to
use a single sendControl() method with a ControlMessage as
parameter, to transmit signaling information across the local
protocol stack. Of course, object inheritance is used and the
transfered message is in fact derived from ControlMessage,
containing the proper information. An example of such derived
message is the QueueCreateNewNeighbourMessage defined
as follows (using OMNeT++ .msg format) :

message QueueCreateNewNeighbourMessage
extends ControlMessage {

fields:
int idNeighbour;
int nbPriorities;

};

This message is used to create nbPriorities new queues when
a new one-hop neighbor (whose address is idNeighbour) has
been detected. A similar message exists to destroy these
queues when the node vanishes from the one-hop neighbor-
hood.

III. SPECIFIC REALIZATIONS

This section first presents the mechanism and API used to
transfer bits between protocol layers and between network
nodes. Then the flexible and modular approach followed in
our framework is discussed. Finally, two examples of sequence
diagrams are reported to illustrate specific realizations.

A. Working at bit level

Modeling communications at bit level allows to finely take
into account the effect of the wireless channel at all protocol
layers. Moreover, this level of detail is required to simulate
some communication schemes. For example in the ANR RISC
project LDPC error correcting codes are used to improve
the quality of wireless communications over a CDMA UWB
channel [22]. Since the interference noise perceived on the
UWB channel depends on the number of interferers and their

signal level which constantly change during the simulations, it
is extremely difficult to assess the performance of such codes
without really running the LDPC codec within the simulation.
To do this, bit level modeling is needed at the PHY layer.
Another example concerns the ANR DITEMOI project. There,
video codec resilient to residual errors are studied, implying
the need of bit level modeling at the application layer.

This work is not the first one proposing bit level modeling.
For example, in MiXiM [5] bit level modeling is possible
even if not supported natively. The novelty of our work with
respect to previous solutions is rather to formalize bit level
modeling all along the path from the top to the bottom layer
of the protocol stack and to associate messages generated at the
highest level of the protocol stack with their bit content. This
is not usually done using OMNeT++: only objects derived
from class cMessage are exchanged between modules, and
especially between the modules modeling the radio channel.
Bit level modeling is introduced by associating a memory area
to each message allocated at the top of the protocol stack, at
the application or user level. This memory area is used to
store the bits of the application message, and is big enough
to include the headers added by the lower layers as the user
message goes down the protocol stack. Also, differently from
the usual OMNeT++ paradigm, the same BytesMsg message
object is transferred through the different protocol layers. The
BytesMsg sub-class of cMessage has three specific members:
(1) memoryArea, a pointer to the memory area where are
stored the bytes of the message; (2) memoryAreaBytes that
stores the size of the previous area; and (3) pduBytes that
stores the actual number of bytes of the message. The pointer
to the first byte of the message is, as illustrated in Fig. 2,
memoryArea + (memoryAreaBytes - pduBytes).

+

User data

UDP header = 8 bytes

IP header = 20 bytes

BytesMsg�memoryArea

+

BytesMsg�pduBytes 

BytesMsg�memoryAreaBytes

BytesMsg�pduArea =
BytesMsg�memoryArea + (BytesMsg�memoryAreaBytes – BytesMsg�pduBytes)

Fig. 2. Example of Application Programming Interface: transmitting real
bits.

Upon reception from the upper layer, a protocol entity
adds its signaling information in front of the first byte of the
received SDU, increases the pduBytes member by an amount
equal to the size of the added signaling header, and transfers
it to the lower layer. Upon reception from the lower layer, a
protocol entity reads the header inserted by its homologous
entity on the source, decreases the pduBytes member by an
amount equal to the size of this signaling header, and transfers
it to the upper layer. In this scheme, there is no longer one
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specific class derived of cMessage for each protocol layer, but
only one generic BytesMsg class. The information usually
contained in the data members of the classes derived from
cMessage are contained in the properly encoded protocol
headers.

At the physical layer where modulation and coding are
applied, the BytesMsg is transformed in a ComplexSignal
to allow the addition of the radio channel effects on the signal
transmitted over the air.

A salient effect of this scheme is to dramatically simplify
the duplication of messages sent on the radio channel. In
fact, before the transmission over the radio channel, instead of
duplicating a long chain of encapsulated messages, a simple
BytesMsg is duplicated.

DL-PDU
header

length < 256 bytes

DL-PDU
header
length

CRC-16

M-PDU #1 M-PDU #2 MAC-PDU #3

Destination Id Source Id
M-PDU
number

M-PDU#1
info

8                16                       8    8                4           4                 16  16

CRC-16reserved

8 +  (2-30) � 10-38 bytes

QoS M-PDU size

6                     10

2 bytes

MCS

2       4

prio

Fig. 3. Bit oriented implementation: example of UDP/IP framing.

Fig. 3 illustrates what is done for the data link PDU (DL-
PDU) header: the different fields of this header are clearly
defined, which allows for example to analyze the resilience of
the signaling protocol when subject to radio channel effects.
Such a header is added to the bytes of DL-PDU payload,
similarly to the UDP and IP headers as presented in Fig. 2.
This DL-PDU payload includes the bits of several MAC-PDU
to be sent in one transmission over the radio channel.

B. A flexible and modular approach to simulation

A major goal of the simulation framework is to enable
the design of detailed radio access protocols, radio access
encompassing both data link and physical layers. As illustrated
in Fig. 1 the data link layer must offer many features such as
robust (IP) header compression, segmentation and reassem-
bly, queuing, medium access control, packing/unpacking of
PHY-PDU. At the physical layer, services like forward error
correction, modulation/demodulation, and amplification before
transmission over the air must be implemented. Additionally,
radio channel modeling is also needed.

Since the simulation framework is supposed to be used in
successive projects, this goal must be attained in a flexible
way. Modifications of models source code must be easy and
must not touch the main part of the source code. Solving
this difficulty involves two winning assets: the definition of
modular protocol architecture and the clever use of the object
oriented [23] [24] software techniques in order to design a
modular software architecture.

1) Modular simulation architecture: This section illustrates
the modular simulation architecture of the framework for the
physical layer. Among the several modules composing the
physical layer (Fig. 1), two main entities whose operation is
scheduled by one key manager module can be found. The
protocol entities implement Forward Error Correcting (FEC)
and Modulation and demodulation (Modem). They must be
capable of providing the following services: different kinds
of error correcting codes for the former, and modulations of
different orders for the latter. The selection of the service
associated to each message to be sent over the air is made
by the Transmission Scheme Manager (TSM) entity. The
TSM is like a switch that forwards messages through the
physical interface. This architecture is modular in the way that
some entities may be skipped and others may be added. For
example if no error correcting code capability is necessary
then the TSM directly forwards the message received from
the data link layer to the Modem. This example corresponds
to the introduction of an hybrid ARQ strategy at the data
link layer. Instead, when bit encoding is not needed (e.g.,
when only higher layer issues are investigated) both FEC
and Modem layers are removed. A final example would be
cooperative relaying [25] which needs an additional module,
the Differential Space Time Coding (DSTC) entity that could
be inserted between the Modem and the amplifier (Tx) entities.

2) Modular software architecture: To ensure good extensi-
bility, a significant effort has been invested in object oriented
software modeling. This section illustrates our approach by
first presenting the design of the resource allocation function.
In this work, this function is run by privileged nodes who
manage resource allocation on behalf of all nodes in their
one hop neighborhood. These nodes receive radio resource
requests from their neighbors, determine which requests will
be satisfied, and then send back a response to their neighbors.

The Fig. 4 presents as example the UML class diagram
of the SlotsAllocator class. Filled in white are object class
that compose the core software on which the resource allo-
cation source code is based. Filled in grey are object class
derived from class of the core software, that are related to a
specific radio resource allocation scheme. In the Time Division
Multiple Access (TDMA) scheme, radio resources are time
slots (MacSlot objects) that follow each other on the time
axis, organized in a MAC frame (MacFrame object). Input
information to a slot allocator are radio resource requests.
Objects derived from SlotsCommand are associated to each
such request, and a slots allocator determines among these
requests which ones will be and not be satisfied.

The MAC layer manages a list of allocators, associating
each allocator to each resource request depending on the type
of the command. For TDMA access, TdmaSlotsCommand
are associated to a TdmaSlotsAllocator allocator. The benefit
of this approach is to allow an easy extension of what currently
exists: to add Orthogonal Frequency Division Multiple Access
(OFDMA) [26] radio access, a new OFDMA allocator would
have to be defined, associated with a new OFDMA command.

Fig. 5 presents the UML class diagram of the wireless chan-
nel model. A single RadioChannelManager object shared
between all network nodes has pointers to objects that cal-
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aemManager
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/*The SlotsCommand list must be sorted from the highest priority
command to the lowest priority one*/
list<SlotsCommand *>::iterator it;
for (it = commands�begin(); it != commands�end(); it++) {

slotsAllocationManager�allocateSlots(*it);
}

}

/* calls the Slot Allocators to allocate slots as requested by the
SlotCommand parameter */
list<SlotsAllocator *>::iterator it;
list<MacSlot *> *slotsList;
for (it = allocators�begin(); it != allocators�end(); it++) {

if (allocator�allocatorType == command�slotCommandType()) {
slotsList = allocator�fressSlotsAllocator�findFreeSlots(command);
allocator�chooseFreeSlots(command, slotsList);
break;

}
}

NeighboursTable

SlotsTable
frameList

MacFrame
slotsList

MacSlot
state
idEmitter
idReceiver
macSlotInfoTdmaSlotsCommand

priority
queuingTime

MacSlotInfo

Fig. 4. Resource allocation class diagram.

culate the contribution of the four main parts of the radio
channel: fast and slow fading, path loss and additive noise.
In the RISC project, specific code was written to model the
noise from multi-user interference on a CDMA UWB chan-
nel [22] (UwbIntefererNoise class derived from the generic
ReceiverNoise class) as well as ground based shadowing
(GroundBasedShadowing class derived from the generic
SlowFading class). To make use of these two models the only
source code modification is to create the appropriate objects
when initializing the RadioChannelManager. The choice of
different channel effects is made through the selection of the
appropriate models, as in a toolbox.

C. Message transmission in the radio access

Beyond protocol and software architecture described in
the previous sections, we describe in Fig. 6 the sequence
diagram of the transmission at the lower part of the radio
access layer, from MAC to the radio channel. In phase 1, the
MAC sub-layer sends the different MAC-PDU to its lower
Packing/Unpacking Manager layer (PUM). Then, from phase
2 to phase 5 the MAC layer transmits a clock signal to
the physical layer, triggering a request for data to the PUM
entity and the transmission to the physical layer of a DL-
PDU using the format illustrated in Fig. 3. The FEC then
adds error correcting bits (phase 6), the Modem modulates
bits into complex symbols (phase 7) that are forwarded over
the radio channel through the Ampli (phases 8 and 9) using
a RadioMsgBB message sent to all nodes that might be
concerned. Phase 2 covers more than one clock signal. Indeed,
in some cases it is necessary to transmit information which is
not supposed to be corrupted by the radio channel. This is

FastFading

double getFastFading() { return 1; }
double getFastFading(FastFadingInfo *ffi) { return 1; }

SlowFading

double getSlowFading() { return 1; }
double getSlowFading(SlowFadingInfo *sfi) { return 1; }

SlowFadingInfo

FastFadingInfo

GroundBasedShadowing

RcmModule
RadioChannelManager *rcm;

RadioChannelManager
PathLoss *pl;
ReceiverNoise *rn;
FastFading *ff;
SlowFading *sf;

PathLoss

double getPathLoss(PathLossInfo *pli) { return 1; }

PathLossInfo
double x1, y1, x2, y2;

FreeSpacePathLoss
variance
double getPathLoss(PathLossInfo *pli);

ReceiverNoise

double getNoise() {return 0; }
double getNoise(NoiseInfo *ni) {return 0; }

NoiseInfo

InterfererNoiseInfo
list<double> *interfererPower;

UwbInterfererNoise

double getNoise(NoiseInfo *ni);

Fig. 5. Radio channel manager class diagram.

still possible in our simulation architecture: this information
is forwarded as a usual C++ object with the RadioMsgBB
message.

MAC

RadioMsgBB [ ComplexSignal ] � … – { ChannelControlInfo }

BytesMsg  – { Layer2ControlInfo }

PUM
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Radio Rx

Fig. 6. Radio access sequence diagram at transmission side.

D. Introducing a real application case: video live transmis-
sion

The emulation of higher layers operation is illustrated in this
section. Typically, considering the case of video transmission,
as can be done in a client/server architecture, real systems use
the Real-Time Streaming Protocol (RTSP) [27] which controls
the delivery of data with real-time properties. In particular
this protocol allows the client and server to negotiate the data
request, the transmission conditions and to choose the delivery
channel (e.g. UDP, TCP, multicast or unicast, ...). As shown
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in Fig. 7, in our system, we are launching the session with the
client making a request for a given file (identified by its key) to
the server, which then answers favorably if it has the content
at its disposal. The session itself can then begin, with the
start request containing the setup elements, and the converse
reply and acknowledgment messages. Once the session is
established, data can be transmitted. When the transmission
conditions are too degraded and no data is received, a new
start request can then be sent, which could be routed along a
new (better) path to resume the transmission.

Decoder EncoderSession Session
ServerClient

Key (video) request

Key response

RTSP START REQ

RTSP START REP

RTSP START ACK

DATA

RTSP ACK

DATA

RTSP START REQ

START

RTSP START REQ

RTSP START ACK

Fig. 7. Video session establishment sequence diagram.

IV. SIMULATION EXAMPLES

In this section we present several results that have been
obtained with the proposed simulation framework and for
which both HFS and bit level modeling were necessary.

1) Data link HARQ - cross-layer scheme: Usually, hybrid
ARQ is integrated in the physical layer (e.g. WiMAX) for
practical implementation reasons. Moving it to the data link
layer allows to investigate cross-layer schemes such as the
one introduced in [28] for ARQ when the IP packets are
fragmented into N fragments to fit the MAC PDU size. In
this cross-layer strategy, the retransmission mechanism at the
data link layer exploits information from both the PHY layer
and the IP layer. When HARQ is used with soft information
in combination with such a cross-layer scheme [29] [30],
the HFS is needed. The cross-layer approach considers a
global persistence C for the set of fragments (MAC PDU)
coming from the same IP packet, whereas the conventional
one considers a per fragment persistence P , ignoring the fact
that it comes form a fragmented IP packet. The cross-layer
scheme will be referred to as SDU-Based Strategy (SBS) and
the conventional one to as PDU-Based Strategy (PBS).

We have implemented both PBS and SBS in the simulation
framework. This enables to assess the performance of the

different approaches using UDP traffic at different layers.
Moreover, due to framework structure, once it is implemented
for one node, it is easy to simulate multi-hop networks. Fig. 8
illustrates the simulation results of a UDP flow transmission
using a TDMA access for one-hop and two-hop networks. The
simulation parameters are: N = 3 fragments per IP packet,
P = 8 and C = 24, which ensure a fair comparison since for
both strategies the same maximum of retransmission credit per
IP packet is allowed. The simulation shows that:

• the SBS outperforms the PBS and confirms the work
in [29],

• the PER is larger at the IP layer than at data link layer,
which is due to the IP packet fragmentation effect,

• the one-hop transmission performs better than the two-
hop one as expected.
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Fig. 8. PBS and SBS performance comparison with IR-HARQ, for N = 3,
P = 8 and C = 24.

2) Data link HARQ - TCP interactions: A tight integration
with the resource allocation scheme is necessary to provide
the reverse way needed for the acknowledgment transmission.
This leads to non-negligible delays between the data transmis-
sion and the reception of the corresponding acknowledgment.
To cope with this delay we have introduced a sliding window.
Fig. 9 represents the variations of both the HARQ sender
window and the TCP congestion window during a 1Mbytes
file transfer (with no loss on the wireless channel). The former
opens and closes according to the radio resources allocated to
the TCP flow. Note that between time 1.3s and 5.3s TCP does
not allow the transmission of any data, implying a minimum
HARQ sender window. After time 5.3s, the permanent state is
reached and alternating congestion avoidance, fast retransmit
and fast recovery TCP phases happen periodically, along with
wide fluctuations of HARQ sender window.

Fig. 10 details what happens at the HARQ sender window
level. Wide variations are visible, due to interactions between
the TCP congestion control, the HARQ sliding window and
the resource allocation mechanisms.

Note in Fig. 10 that the HARQ window periodically attains
its maximum value, 31. In those cases, no more data is
transmitted over the wireless channel until acknowledgments
have been received, closing the window. When the maximum
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Fig. 9. Joint evolution of the HARQ sender window and TCP congestion
window during ad hoc transmission.
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Fig. 10. Zoom of Fig.9.

value is not large enough, this entails a reduction in the TCP
throughput, as shown in Table I.

TABLE I
HARQ SLIDING WINDOW vs. TCP THROUGHPUT.

HARQ maximum window (#PDU) 31 16 8
Normalized TCP throughput 0,942 0,913 0,482

3) Video transmission: The usage of HFS from and up
to the application level is justified in several cases by the
interest and necessity of representing true bit reality. One of
these cases corresponds to the introduction of forward error
correction codes in the higher layers of the protocol stack, as
for instance with RTP-FEC or more generally IETF FecFrame
approaches, which aim at overcoming remaining losses or
errors at transport or application layers, without requiring a
full TCP integrity mechanism. Another case corresponds to
the transmission of multimedia data, whose codecs are often
resilient to small errors or losses, and for which errors or losses
positions are critical to evaluate their real impact on the end-
user and measure the PQoS. This is the case considered by
the French ANR DITEMOI project, in which error and loss

resilient H.264/AVC decoders were introduced [31], and new
strategies for limiting retransmission in video sessions in a
multiple users context are being studied.

Fig. 11 and Fig. 12 illustrate the type of results that can
be obtained for a video data transmission in the context of a
peer-to-peer communication with two interested users. Since
the simulator transmits the real bits of an input video, the
video can be reconstructed at the receiver side image after
image. Comparing the original video with the received one,
the Picture Signal to Noise Ratio (PSNR), which is a classical
objective measure of the video quality, can be computed.
Fig. 11 reports for one user the variation of the PSNR as
a function of the frame number of the video sequence in two
cases: the first one corresponding to a reference case (solid
line) and the second one corresponding to an optimized design
(dashed line) where proxies are introduced and allow fine
treatments of imperfect packets. Moreover, for a given frame
number, the received images in the reference and optimized
cases are placed side by side in Fig. 12, showing that the
simulator allows not only an objective measurement but also a
subjective evaluation of the video quality. The frame, number
145, associated to the pictures in Fig. 12 is identified by a
vertical dotted line in Fig. 11.
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Fig. 11. PSNR comparison vs. frame number between reference and
optimized processing.

Fig. 12. Comparison of two video sequences quality at frame number 145,
left: reference, right: optimized.
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V. CONCLUSIONS

In this paper we presented the main features of a new sim-
ulation framework using OMNeT++ for the study of transmis-
sion of data and multimedia content over hybrid wired/wireless
ad hoc networks and the design of innovative radio access
schemes. Details of the API allowing high-fidelity simulations
by transmitting bits and bytes over the radio channel have
been provided along with simulation results examples in the
context of video and TCP/HARQ schemes transmissions. This
framework structure is developed in a flexible manner and
can encompass various other schemes such as multiple access,
OFDMA or cooperative relaying communication techniques.
Moreover, this flexibility brought by the modular conception
also allows to capitalize on the previous developments by
incremental update of the simulation framework and makes
it sustainable in time. As future work we plan to compare
results obtained through HFS as described in this paper with
results coming from less detailed simulations that do not take
into account the real bits of the traffic flows transferred on the
network.
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