
 50

JPEG 2000 BACKWARD COMPATIBLE ERROR PROTECTION WITH

REED-SOLOMON CODES

Didier Nicholson1, Catherine Lamy-Bergot1, Xavier Naturel1, Charly Poulliat2

1THALES Communications France,
TRS/TSI, Colombes.

2ENSEA-Cnrs UMR8051-Univ. Cergy Pontoise,
Equipe Traitement des Images et du Signal

ABSTRACT

In this paper, a backward compatible header error
protection mechanism is described. It consists of the
addition of a dedicated marker segment to a JPEG 2000
codestream, that will contain the error correction data
generated by a block error correction code (e.g. a Reed
Solomon code). This mechanism allows to leave the
original data intact, hence providing backward
compatibility with the already standardised JPEG 2000.
Neither side information from higher level, nor extra
signalling encapsulation is needed, as the required
information is directly embedded in the codestream and
also protected.

1. INTRODUCTION

During the establishment of JPEG 2000 standard [1], a set
of error resilience tools have been selected, for the
transmission of JPEG 2000 compressed images in an
error prone environment. Two types of tools are
available, on the packet level, which enable
synchronisation, and on the entropy coding level,
enabling error detection. An analysis of the performances
of such tools has been done in [2] and [3]. These tools are
however based on one major hypothesis, namely that the
headers (Main Header and Tile-part(s) header(s)) of the
codestream syntax are guaranteed to be error free.
However, in the case of error within the headers, the
codestream is not decodable in a proper way, which
might conduct to a decoder application crash. The worse
is that, generally, it might not be possible to guarantee
that the headers will be kept free of errors in many
applications.

In order to extend the error resilience to headers and
avoid (or strongly limit) the decoding crashes due to error
presence, it is consequently necessary to define an error
protection mechanism for protecting Main Header and
Tile-part(s) header(s). It is to be noted that this protection
can be extended to the packet headers when they are

relocated within the Main and Tile-part(s) header(s)
thanks to the packed packets functionality of JPEG 2000.
Such a protection can either be provided by an external
coding scheme, such as the unequal error protection
solutions proposed in [4]-[5], or directly be supplied by
an embedded mechanism in the JPEG 2000 syntax. The
drawbacks of external schemes are well known: in
particular, the error correcting scheme must whether have
full knowledge of the bistream syntax (resulting in the
necessity to transmit extra information between the two
coders), or protect it partially blindly (i.e. less efficiently,
for instance by using statistical ratios to determine the
various bitstream parts). Moreover, such schemes cannot
take advantage of the various source coder functionalities
such as the headers reordering.

As a consequence, it is proposed in this paper to
develop a scheme that embeds the protection within the
JPEG 2000 stream. Such a mechanism can be in practice
whether compatible with JPEG 2000 or not. It was chosen
to present here a backward compatible mechanism.

The work presented in this paper has been submitted to
the Part 11 of JPEG 2000 Ad Hoc Group, named
Wireless JPEG 2000 [6]. This JPEG 2000 Ad Hoc Group
is considering the wireless application needs for
JPEG 2000, and will standardise the mechanisms
enabling advanced error correction and/or handling of
JPEG 2000 compressed images.

This paper is organised as follows: Section 2 presents
the scheme proposed to ensure error protection of the
JPEG 2000 codestream, describing the proposed new
marker and its functionalities. Section 3 presents the
simulation conditions and the corresponding results
obtained. Finally some conclusions are drawn in
Section 4 and perspectives are presented.

2. A JPEG 2000 BACKWARD COMPATIBLE
ERROR PROTECTION SCHEME FOR HEADERS

In this section, the structure of a new marker segment for
JPEG 2000 is proposed, that will allow to perform header
protection. In a first step, elements on JPEG 2000 syntax,
on the implications of the wished backward compatibility

 51

and on error correction codes are given. Then, the marker
segment syntax is detailed and default error correction
codes are proposed.

2.1. JPEG 2000 codestream syntax

A JPEG 2000 compressed image uses markers and
marker segments to delimit and signal the compressed
information, organised in headers (Main and Tile-parts)
and packets. This modular organisation allows flexible
bitstream organisation for progressive data representation,
such as quality progressive and resolution progressive
data progression. A JPEG 2000 codestream always starts
by the Main Header followed by one or several Tile-part
Headers, each of them followed by compressed data
packets, and ends by an End Of Codestream (EOC), as
shown in Fig. 1.

M
ai

n
H

ea
de

r

Ti
le

 P
ar

t

 H
ea

de
r

EO
C

 m
ar

ke
r

Pa
ck

et

Pa
ck

et

Pa
ck

et

Ti
le

 P
ar

t

 H
ea

de
r

Pa
ck

et

Pa
ck

et

Pa
ck

et

Ti
le

 P
ar

t

 H
ea

de
r

Pa
ck

et

Pa
ck

et

Fig. 1. JPEG 2000 codestream structure.

For more information on JPEG 2000 standard, please
refer to [1].

2.2. Backward compatibility requirements

The objective being to obtain a codestream compliant
with JPEG 2000 Part 1 specifications [1] after the
insertion of the redundant information, it is necessary to
place this information in such a way that any JPEG 2000
Part 1 decoder won't try to interpret it. A solution for this
is to insert the redundant information in a dedicated
marker segment. This marker will be denoted by EPB for
Error Protection Block in the rest of this paper. A
JPEG 2000 Part 1 compliant decoder will then skip the
(from itself) unknown marker segment and be oblivious
to the added data, whereas a JPEG 2000 Part 11
compliant decoder will be able to interpret and use the
redundancy for header protection.

The conditions for such a mechanism to work in the
context of JPEG 2000 are:
• that the decoder is able to locate the redundant

information data block in the codestream without
generating complex data indexing mechanism (that
would also have to be protected against errors) nor
with modifying the first marker segments imposed
for the backward compatibility;

• that the marker itself and its length are included in
the data range to be protected;

• that a defined block error code is used to protect at
least up to the Error Protection Block marker

segment parameters data (which, as later are
proposed to be the marker, Length, index, EPB
parameters), allowing the recovery of the marker
boundaries.

To meet the first of these requirements, a solution is to
place the marker segment with the redundant information
immediately after the mandatory markers, that is to say:
• the SOC and SIZ marker segments for the Main

header;
• the SOT marker for the Tile-part header.

Then, the use of a forward error-correction mechanism
such as the one proposed in the following section will
ensure that these two conditions are verified. As, for
backward compatibility reasons, the original data must be
kept untouched, and the redundant information must be
concatenated to it and located in a dedicated JPEG 2000
marker segment, a systematic error correction mechanism
shall be used.

2.3. Forward Error correction mechanism

Error correction and detection codes are traditionally used
to provide forward error correction capabilities in error
prone environments. Considering that JPEG and
JPEG 2000 codestreams are byte aligned, it is especially
interesting to work with the Galois Field GF(28) to
provide error-correction capability. A well-known and
well-suited family of systematic codes in this context is
the Reed-Solomon (RS) one [7]. In the following, we will
consider the example of RS codes as our FEC codes for
header protection, and denote them by RS(N,K), where N
is the codewords symbol length and K the number of
information symbols.

The RS(N,K) applied to K bytes will generate N-K
redundancy bytes, that may be placed after the K original
(systematic) bytes, this process being applied as long as
necessary, as illustrated in Fig. 2.

K K K K N-K N-K N-K N-K

Fig. 2. Example of redundancy generation for an RS(N,K) code.

In order to remain compliant with JPEG 2000 Part 1
specifications, it was chosen to place the EPB marker
segment immediately after the mandatory bytes of the
considered header. Fig. 3 illustrates this disposition in the
Main header case. Those mandatory bytes, together with
the beginning of the EPB (in practice, the marker and its
length information) constitutes then a first set of data,
whose L1 bytes is protected by L2 redundancy bytes

 52

placed immediately after (in the EPB marker data). This
way, the bitstream remains compliant to JPEG 2000
Part 1 and if the error-correcting code used for protection
is fixed, the decoding can take place without requiring the
transfer of an extra (and unprotected) information. This
L1+L2 byte section can for instance be generated by an
RS(L1+L2,L1) code.

SO
C

SI
Z

E
PB Remaining

marker segments

L1 L2 L3 L4

L1+L2 L3+L4

Fig. 3. Position of the EPB marker in the JPEG 2000
codestream in the Main Header case.

The remaining marker segments (L4 bytes) can then be
protected by the remaining L3 bytes of the EPB marker
segment, for instance with an RS(L3+L4,L4) code.

2.4. Proposed EPB marker segment description

The proposed Error Protection Block (EPB) marker
segment contains information about the error protection
parameters and data used to protect the headers against
errors. The EPB syntax allows to use more than one EPB
marker segments in a header, providing then a great
flexibility in terms of size and redundancy, and to define
future additional error correcting codes.

EP
B

Le
pb

D
ep

b EPB data

LP
D

ep
b

Pe
pb

Fig. 4. Description of the proposed Error Protection Block
marker segment syntax.

Fig. 4 describes the syntax proposed for the EPB
marker segment, where the various fields of the marker
are defined as follows:

EPB: marker code (Length 16 bits);
Lepb: length of marker segment in bytes (not

including the marker) (Length 16 bits);
Depb: EPB style (for example defines if the current

EPB is the latest in the current header) (Length 8 bits);
LDPepb: length of the data to be protected by the

redundant information (EPB data) carried within the
current EPB (Length 32 bits);

Pepb: EPB Parameters: This defines the next Error
correction code to be used for protecting the remaining
data. (Length 32 bits);

EPB data: contains the data enabling the correction

(typically redundancy bits) for the chosen RS code.
It is to be noted that the error-correcting code settings

(i.e. the definition of the code protecting the remaining
marker segments) can be specified in the beginning of the
EPB marker segment in the Pepb parameter. The only
restriction is that , these parameters have then to be of
fixed size, as they will have to be protected by the first
(fixed) code.

For efficiency reasons, it is necessary to consider that
there could be more that only one EPB in the header. In
fact, the Main Header or Tile-part Header size can be
quite large when optional markers such as PPM (packed
packet headers) are included. As a consequence, it is
useful to include within the EPB syntax an EPB index (in
Depb) which will enable the presence of several EPBs in
the header. By default, one could consider that if the
index is set to 0, the EPB block is the only one present,
otherwise the EPBs are grouped together.

Another element to be considered is the large
variations of the mandatory fields size, in particular in the
Main Header. As a matter of fact, the number of
components in the image may vary very much, even
though most of the images used have in practice up to
three or four components. Considering that this number
of components directly impacts the size of field SIZ,
which itself must be protected by the first fixed code, the
dimensioning of the first code to the maximal possible
size of SIZ field would lead to dramatic compression
efficiency losses. As a consequence, it is useful to
consider that by default the EPB will be dimensioned to
match the most common cases, typically up to three
components. Should the image contain more components,
a second or more EPB marker placed immediately after
the first one will protect the rest of the mandatory fields
(typically the end of SIZ). At the decoding side, an
hypothesis test on the number of image components will
be carried out using the expected associated redundancy.
The decoded number of components is the one with the
lowest error detection test.

For more detailed information on the proposed EPB,
please refer to [6].

2.5. Default error correction codes

A default error correction code has been defined to be
used in the simulation tests for protecting data preceding
EPB redundant data. As previously mentioned, it is
mandatory to define this default code for the two
following reasons:
• the EPB marker segment cannot define the error

correction code to be used for itself;
• the position of the first EPB marker segments

 53

included in the Main Header is not known precisely
and depends of the number of component of the
image, which impact the size of the SIZ marker
segment. This constraint imposes to perform first a
synchronisation based upon the error detection
process.

When the number of data to be protected by RS(N,K)
is not a multiple of K bytes, it is necessary to generate
padding bytes. In order to limit this byte padding, it is
interesting to chose codes astutely, namely codes leading
to a total size L1+L2 in bits divisible by 8. Considering
that one and three image components are the most
common case, and considering the proposed EPB
structure, we selected as default code the code already
proposed in [8] for the main header, i.e. the Reed-
Solomon code RS(128,64). This code allows to correct up
to 32 erroneous bytes. Note however that the use of a
BSC channel, which means that the errors are uniform
across the codestream, is not optimal for the Reed-
Solomon code, as when the error bits are distributed in
different bytes, they may lead to an error correction limit
of only 32 bits (in the worst case). Distributed in the 128
bytes (1024 bits) of the EPB for the main header, those 32
error bits account for a BER of 3.10-2, which is clearly
our error correction capacity, as can be seen in the results
presented in Section 3.

In order to limit byte padding two other default codes
have been used:
• RS(45,25) for the first EPB marker segment of a

Tile-part Header;
• RS(25,13) for the non-first EPB marker segments of

both the Main Header and the Tile-part header.

3. RESULTS

In this section, some results about above described
protection scheme are provided. In a first step,
compliance tests are carried out, to address the problem
of the backward compatibility. Then, tests on the
robustness to errors of the detection of the number of
image components are proposed. Finally, a comparison
with the case without header protection is done in
presence of noise, and the number of decoding leading to
a decoder crash are counted.

3.1. Backward compatibility compliance tests

To ensure that the insertion of the EPB marker segments
described in Section 2 allows as foreseen to keep
backward compatibility with JPEG 2000 Part 1 decoder,
compliance bitstreams (JPEG 2000 Part 4) embedding the
EPB marker segments have been generated and tested

with the different JPEG 2000 reference software. Those
bitstreams, which are available for testing on the
JPEG 2000 member's website (http://www.jpeg.org),
were fully decoded and provided the same output as their
counterparts without EPB marker segments.

3.2. Synchronization tests

As mentioned before, JPEG 2000 allows to work with
multi-component images. As a result, the size of the
headers to be protected increases with the number of
components, and it was chosen to perform as first step
before error correction a detection of the number of
components of the image. This detection can be done by
considering a hypothesis test on the number of image
components (typically 1 or 3 which are the most likely
figures in practice) using the expected associated
redundancy. The more likely number of components is
the one with the lowest error detection test. This detection
can be viewed as synchronisation test, as we try to
recover the start of redundancy in the compressed
bitstream.

Tests have been done to determine the robustness of
such a mechanism in presence of errors. The case of a
Binary Symmetric Channel (BSC) with various resultant
Bit Error rates (BER) was considered. For a given image
and a given number of components, the percentage of
good detections of the number of components has been
estimated.

Table I shows the results obtained for image "Bike"
(2048x2560, 1 component) and image "Lena" (512x512,
3 components), both compressed at 0.5 bpp (bit per pixel)
for various BERs. The probabilities of good detection
were derived for 10000 independent noise realisations.
For each realisation, the channel bit error rate constant
through the image, which means that the compressed
bitstream (headers and data) is uniformly corrupted.

It can be seen that a highly reliable detection of the

TABLE I
PROBABILITY OF GOOD DETECTION AVOIDING A DECODING CRASH
FOR ONE AND THREE COMPONENTS IMAGES CORRUPTED BY A BSC

CHANNEL.
BER on the

BSC Image "Bike" Image "Lena"

 10-3 1.0 1.0
 10-2 1.0 1.0
 2.10-2 0.99995 0.999
 3.10-2 0.908 0.850
 4.10-2 0.389 0.267
 5.10-2 0.049 0.022
 6.10-2 0.002 0.001
 7.10-2 0.0 0.0
 10-1 0.0 0.0

 54

number of image components is obtained for a large
range of BER. The error correction capabilities depend
from the considered RS codes capabilities. This is
illustrated in Fig. 5, where the obtained synchronisation
results are compared with the considered RS(128,64)
code performance. As foreseen due to the use of padding
for images with a number of components different of 3,
results for 'Lena' image are the same as the RS code ones,
whereas those obtained for 'Bike' image are slightly
better. Naturally, better results (a larger BER range where
good detection are obtained) would be obtained by taking

a more powerful code.
Fig. 5. Performance comparison for synchronisation tests and
standard RS decoding.

3.3. Crash decoding tests

Having tested the performance of the synchronisation
process, we now consider the overall performance of the
proposed system by tracking performance in terms of
crash decoding. Errors occurring in header may indeed
conduct to a crash of the decoding process, or to place it
in a never-end state. As the focus of this paper is the
study of error detection and correction mechanisms for
the main and tile-part headers, our purpose is to show that
such crashes in the decoding process can be avoided
using the proposed header protection mechanism. Note
that when no decoder crash occurs, i.e. when an output
image is produced by the decoder, this image may still
result from a codestream that include errors in the
headers. In this case, the decoded image may or may not
be damaged seriously, depending on the location of the
error(s). For example an error occurring in an optional
marker segment may have no impact on the decoded
image, whereas an error in the image size will conduct to
a bad result. In this section we consider only the fact that
images can be decoded without freezing or crashing the
decoder, whatever the result. It is to be noted that the
crash behaviour strongly depends of the decoder
implementation, and that given performances are only
valid with the decoder used in the experiments, i.e. the

Verification Model version 8.6.
Once again, a BSC channel was considered for our

experiments. The corresponding results obtained for both
the mono and multi tile-part cases with the mechanism
defined in Section 2 are compared to those obtained
without using backward compatible error correction
capabilities.

As reference, Table II shows the results obtained for
the "Lena" image compressed at 0.5 bpp, with one tile
and one tile-part, when no EPB marker is considered. The
probability of crash avoidance was derived for 1000
independent noise realisations. Those results illustrate the
dire need for header protection, as it is obvious that even
for a BER as low as 10-4, the decoder may crash, leading
to an interruption of the service, the obligation to re-
initialise the decoder ("reboot"), …. Let now compare
these results to those obtained for the same image (still
compressed 0,5 bpp) with the EPB marker embedded.

Table III shows the results obtained firstly in the case
where a unique tile-part is used and secondly in the case
where the image is coded with five tile-parts. Once again,
the probabilities of crash avoidance were obtained for
1000 independent noise realisations.

The results obtained in those various tables clearly

TABLE II
PROBABILITY OF AVOIDING A DECODING CRASH FOR "LENA"

IMAGE CORRUPTED BY A BSC CHANNEL.

BER on the BSC Image "Lena"

 10-4 0.94
 10-3 0.63
 10-2 0.03
 2.10-2 0.0
 3.10-2 0.0
 4.10-2 0.0
 5.10-2 0.0
 10-1 0.0

0

0,2

0,4

0,6

0,8

1

1,2

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

Code RS(128,64)
Synchronisation for 'Bike' image
Synchronisation for 'Lena' image

TABLE III
PROBABILITY OF AVOIDING A DECODING CRASH WITH THE EPB
MARKER SEGMENT FOR "LENA" IMAGE CORRUPTED BY A BSC

CHANNEL, IN THE MONO OR MULTI TILE-PART CASE.

BER on the BSC Image "Lena"
1 tile-part

Image "Lena"
5 tile-parts

 10-4 1.0 1.0
 10-3 1.0 1.0
 10-2 1.0 1.0
 2.10-2 0.966 0.965
 3.10-2 0.672 0.567
 4.10-2 0.134 0.036
 5.10-2 0.003 0.0
 10-1 0.0 0.0

 55

show the interest of the proposed EPB mechanism, for it
provides a clear improvement of the decoder performance
in presence of transmission errors in the JPEG 2000
headers. Typically, for a bit error rate of 2.10-2 on the
channel, almost all images are decodable (in more than
96% of the cases) whereas the classical image
systematically leads to a decoding crash. This is even
more interesting those results are obtained both for the
case of mono and multi tile-part, and for a very reduced
overhead cost (about 0.35% for "Lena" images and about
0.11% for "Bike" image), which reflects from the authors
point of view the flexibility and efficiency of the
proposed header EPB marker segment technique.

4. CONCLUSIONS AND PERSPECTIVES

A fully JPEG 2000 Part 1 compliant backward
compatible error protection scheme for headers was
proposed in this paper. The description of a new
normative embedded marker segment was provided and
tested with Reed-Solomon codes. Simulation tests were
given, that show that the performance of the decoder can
be significantly improved in terms of crash decoding for
both mono or multi tile-parts, and with a reasonable
decrease of compression efficiency.

As an immediate perspective of interest, using the
particularly flexible structure of the EPB marker segment,
embedded Unequal Protection schemes can be envisaged
for joint or tandem Source-channel coding.

5. REFERENCES

[1] JPEG 2000 image coding system. ISO/IEC 15444-1 / IUT-T
T.800.
[2] L. Liang., B. Luc, A. Lie, J. Wus and F. Kossentini, “Error
resilience Ad-hoc Sub-Group Report for the Tokyo Meeting ”,
ISO/IEC JTC 1/SC 29/WG 1, N1606, Tokyo, Japan, Mar. 2000.
[3] C. Pouillat and D. Nicholson, “Impact and efficiency of
error resilience tools for mobile applications”, ISO/IEC JTC1
SC29 WG1 N2176, Stockholm, Sweden, Jul. 2001.
[4] A. Natu and D. Taubman “Unequal Protection of JPEG 2000
Code-Streams in Wireless Channels”, Proceedings of IEEE
GLOBECOM’02, vol. 1, pp. 534-538, Taipei, China, 17-21
Nov. 2002.
[5] V. Sanchez and M.K. Mandal, “Robust transmission of
JPEG 2000 images over noisy channels, ” Proceedings of IEEE
ICCE'02, pp. 80-81, 2002.
[6] D. Nicholson, C. Lamy, C. Poulliat and X. Naturel,
“Backward Compatible Header Error Protection in a JPEG 2000
codestream”, ISO/IEC JTC1 SC29 WG1 N2851, Seoul, Korea,
Mar. 2003.
[7] F.G. MacWilliams, N.J.A Sloane, The Theory of error
correcting codes: Part 1, North-Holland Publishing Company:
New York, 1977, pp. 294-315.

[8] C. Poulliat, P. Vila, D. Pirez and I. Fijalkow, “Progressive
quality JPEG 2000 image transmission over noisy channel”,
Proceedings of EUSIPCO'02, Toulouse, France, Sept. 2002.

	Main Menu
	Getting Started
	Table of Contents
	Copyright

