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ABSTRACT 

 
In this paper, a backward compatible header error 
protection mechanism is described. It consists of the 
addition of a dedicated marker segment to a JPEG 2000 
codestream, that will contain the error correction data 
generated by a block error correction code (e.g. a Reed 
Solomon code). This mechanism allows to leave the 
original data intact, hence providing backward 
compatibility with the already standardised JPEG 2000. 
Neither side information from higher level, nor extra 
signalling encapsulation is needed, as the required 
information is directly embedded in the codestream and 
also protected. 

 

1. INTRODUCTION 
 
During the establishment of JPEG 2000 standard [1], a set 
of error resilience tools have been selected, for the 
transmission of JPEG 2000 compressed images in an 
error prone environment. Two types of tools are 
available, on the packet level, which enable 
synchronisation, and on the entropy coding level, 
enabling error detection. An analysis of the performances 
of such tools has been done in [2] and [3]. These tools are 
however based on one major hypothesis, namely that the 
headers (Main Header and Tile-part(s) header(s)) of the 
codestream syntax are guaranteed to be error free. 
However, in the case of error within the headers, the 
codestream is not decodable in a proper way, which 
might conduct to a decoder application crash. The worse 
is that, generally, it might not be possible to guarantee 
that the headers will be kept free of errors in many 
applications. 

In order to extend the error resilience to headers and 
avoid (or strongly limit) the decoding crashes due to error 
presence, it is consequently necessary to define an error 
protection mechanism for protecting Main Header and 
Tile-part(s) header(s). It is to be noted that this protection 
can be extended to the packet headers when they are 

relocated within the Main and Tile-part(s) header(s) 
thanks to the packed packets functionality of JPEG 2000. 
Such a protection can either be provided by an external 
coding scheme, such as the unequal error protection 
solutions proposed in [4]-[5], or directly be supplied by 
an embedded mechanism in the JPEG 2000 syntax. The 
drawbacks of external schemes are well known: in 
particular, the error correcting scheme must whether have 
full knowledge of the bistream syntax (resulting in the 
necessity to transmit extra information between the two 
coders), or protect it partially blindly (i.e. less efficiently, 
for instance by using statistical ratios to determine the 
various bitstream parts). Moreover, such schemes cannot 
take advantage of the various source coder functionalities 
such as the headers reordering. 

As a consequence, it is proposed in this paper to 
develop a scheme that embeds the protection within the 
JPEG 2000 stream. Such a mechanism can be in practice 
whether compatible with JPEG 2000 or not. It was chosen 
to present here a backward compatible mechanism. 

The work presented in this paper has been submitted to 
the Part 11 of JPEG 2000 Ad Hoc Group, named 
Wireless JPEG 2000 [6]. This JPEG 2000 Ad Hoc Group 
is considering the wireless application needs for 
JPEG 2000, and will standardise the mechanisms 
enabling advanced error correction and/or handling of 
JPEG 2000 compressed images. 

This paper is organised as follows: Section 2 presents 
the scheme proposed to ensure error protection of the 
JPEG 2000 codestream, describing the proposed new 
marker and its functionalities. Section 3 presents the 
simulation conditions and the corresponding results 
obtained. Finally some conclusions are drawn in 
Section 4 and perspectives are presented. 
 

2. A JPEG 2000 BACKWARD COMPATIBLE 
ERROR PROTECTION SCHEME FOR HEADERS 

 
In this section, the structure of a new marker segment for 
JPEG 2000 is proposed, that will allow to perform header 
protection. In a first step, elements on JPEG 2000 syntax, 
on the implications of the wished backward compatibility 
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and on error correction codes are given. Then, the marker 
segment syntax is detailed and default error correction 
codes are proposed. 
 
2.1. JPEG 2000 codestream syntax 
 
A JPEG 2000 compressed image uses markers and 
marker segments to delimit and signal the compressed 
information, organised in headers (Main and Tile-parts) 
and packets. This modular organisation allows flexible 
bitstream organisation for progressive data representation, 
such as quality progressive and resolution progressive 
data progression. A JPEG 2000 codestream always starts 
by the Main Header followed by one or several Tile-part 
Headers, each of them followed by compressed data 
packets, and ends by an End Of Codestream (EOC), as 
shown in Fig. 1. 
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Fig. 1. JPEG 2000 codestream structure. 

For more information on JPEG 2000 standard, please 
refer to [1]. 
 
2.2. Backward compatibility requirements 
 
The objective being to obtain a codestream compliant 
with JPEG 2000 Part 1 specifications [1] after the 
insertion of the redundant information, it is necessary to 
place this information in such a way that any JPEG 2000 
Part 1 decoder won't try to interpret it. A solution for this 
is to insert the redundant information in a dedicated 
marker segment. This marker will be denoted by EPB for 
Error Protection Block in the rest of this paper. A 
JPEG 2000 Part 1 compliant decoder will then skip the 
(from itself) unknown marker segment and be oblivious 
to the added data, whereas a JPEG 2000 Part 11 
compliant decoder will be able to interpret and use the 
redundancy for header protection. 

The conditions for such a mechanism to work in the 
context of JPEG 2000 are: 
•  that the decoder is able to locate the redundant 

information data block in the codestream without 
generating complex data indexing mechanism (that 
would also have to be protected against errors) nor 
with modifying the first marker segments imposed 
for the backward compatibility; 

•  that the marker itself and its length are included in 
the data range to be protected; 

•  that a defined block error code is used to protect at 
least up to the Error Protection Block marker 

segment parameters data (which, as later are 
proposed to be the marker, Length, index, EPB 
parameters), allowing the recovery of the marker 
boundaries. 

To meet the first of these requirements, a solution is to 
place the marker segment with the redundant information 
immediately after the mandatory markers, that is to say: 
•  the SOC and SIZ marker segments for the Main 

header; 
•  the SOT marker for the Tile-part header. 

Then, the use of a forward error-correction mechanism 
such as the one proposed in the following section will 
ensure that these two conditions are verified. As, for 
backward compatibility reasons, the original data must be 
kept untouched, and the redundant information must be 
concatenated to it and located in a dedicated JPEG 2000 
marker segment, a systematic error correction mechanism 
shall be used. 
 
2.3. Forward Error correction mechanism 
 
Error correction and detection codes are traditionally used 
to provide forward error correction capabilities in error 
prone environments. Considering that JPEG and 
JPEG 2000 codestreams are byte aligned, it is especially 
interesting to work with the Galois Field GF(28) to 
provide error-correction capability. A well-known and 
well-suited family of systematic codes in this context is 
the Reed-Solomon (RS) one [7]. In the following, we will 
consider the example of RS codes as our FEC codes for 
header protection, and denote them by RS(N,K), where N 
is the codewords symbol length and K the number of 
information symbols. 

The RS(N,K) applied to K bytes will generate N-K 
redundancy bytes, that may be placed after the K original 
(systematic) bytes, this process being applied as long as 
necessary, as illustrated in Fig. 2. 

K K K K N-K N-K N-K N-K

Fig. 2. Example of redundancy generation for an RS(N,K) code. 

In order to remain compliant with JPEG 2000 Part 1 
specifications, it was chosen to place the EPB marker 
segment immediately after the mandatory bytes of the 
considered header. Fig. 3 illustrates this disposition in the 
Main header case. Those mandatory bytes, together with 
the beginning of the EPB (in practice, the marker and its 
length information) constitutes then a first set of data, 
whose L1 bytes is protected by L2 redundancy bytes 
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placed immediately after (in the EPB marker data). This 
way, the bitstream remains compliant to JPEG 2000 
Part 1 and if the error-correcting code used for protection 
is fixed, the decoding can take place without requiring the 
transfer of an extra (and unprotected) information. This 
L1+L2 byte section can for instance be generated by an 
RS(L1+L2,L1) code. 

SO
C

SI
Z

E
PB Remaining

marker segments

L1 L2 L3 L4

L1+L2 L3+L4

 
Fig. 3. Position of the EPB marker in the JPEG 2000 
codestream in the Main Header case. 

The remaining marker segments (L4 bytes) can then be 
protected by the remaining L3 bytes of the EPB marker 
segment, for instance with an RS(L3+L4,L4) code. 
 
2.4. Proposed EPB marker segment description 
 
The proposed Error Protection Block (EPB) marker 
segment contains information about the error protection 
parameters and data used to protect the headers against 
errors. The EPB syntax allows to use more than one EPB 
marker segments in a header, providing then a great 
flexibility in terms of size and redundancy, and to define 
future additional error correcting codes. 
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Fig. 4. Description of the proposed Error Protection Block 
marker segment syntax. 

Fig. 4 describes the syntax proposed for the EPB 
marker segment, where the various fields of the marker 
are defined as follows: 

EPB: marker code (Length 16 bits); 
Lepb: length of marker segment in bytes (not 

including the marker) (Length 16 bits); 
Depb: EPB style (for example defines if the current 

EPB is the latest in the current header) (Length 8 bits); 
LDPepb: length of the data to be protected by the 

redundant information (EPB data) carried within the 
current EPB (Length 32 bits); 

Pepb: EPB Parameters: This defines the next Error 
correction code to be used for protecting the remaining 
data. (Length 32 bits); 

EPB data: contains the data enabling the correction 

(typically redundancy bits) for the chosen RS code. 
It is to be noted that the error-correcting code settings 

(i.e. the definition of the code protecting the remaining 
marker segments) can be specified in the beginning of the 
EPB marker segment in the Pepb parameter. The only 
restriction is that , these parameters have then to be of 
fixed size, as they will have to be protected by the first 
(fixed) code. 

For efficiency reasons, it is necessary to consider that 
there could be more that only one EPB in the header. In 
fact, the Main Header or Tile-part Header size can be 
quite large when optional markers such as PPM (packed 
packet headers) are included. As a consequence, it is 
useful to include within the EPB syntax an EPB index (in 
Depb) which will enable the presence of several EPBs in 
the header. By default, one could consider that if the 
index is set to 0, the EPB block is the only one present, 
otherwise the EPBs are grouped together. 

Another element to be considered is the large 
variations of the mandatory fields size, in particular in the 
Main Header. As a matter of fact, the number of 
components in the image may vary very much, even 
though most of the images used have in practice up to 
three or four components. Considering that this number 
of components directly impacts the size of field SIZ, 
which itself must be protected by the first fixed code, the 
dimensioning of the first code to the maximal possible 
size of SIZ field would lead to dramatic compression 
efficiency losses. As a consequence, it is useful to 
consider that by default the EPB will be dimensioned to 
match the most common cases, typically up to three 
components. Should the image contain more components, 
a second or more EPB marker placed immediately after 
the first one will protect the rest of the mandatory fields 
(typically the end of SIZ). At the decoding side, an 
hypothesis test on the number of image components will 
be carried out using the expected associated redundancy. 
The decoded number of components is the one with the 
lowest error detection test. 

For more detailed information on the proposed EPB, 
please refer to [6]. 
 
2.5. Default error correction codes 
 

A default error correction code has been defined to be 
used in the simulation tests for protecting data preceding 
EPB redundant data. As previously mentioned, it is 
mandatory to define this default code for the two 
following reasons: 
•  the EPB marker segment cannot define the error 

correction code to be used for itself; 
•  the position of the first EPB marker segments 
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included in the Main Header is not known precisely 
and depends of the number of component of the 
image, which impact the size of the SIZ marker 
segment. This constraint imposes to perform first a 
synchronisation based upon the error detection 
process. 

When the number of data to be protected by RS(N,K) 
is not a multiple of K bytes, it is necessary to generate 
padding bytes. In order to limit this byte padding, it is 
interesting to chose codes astutely, namely codes leading 
to a total size L1+L2 in bits divisible by 8. Considering 
that one and three image components are the most 
common case, and considering the proposed EPB 
structure, we selected as default code the code already 
proposed in [8] for the main header, i.e. the Reed-
Solomon code RS(128,64). This code allows to correct up 
to 32 erroneous bytes. Note however that the use of a 
BSC channel, which means that the errors are uniform 
across the codestream, is not optimal for the Reed-
Solomon code, as when the error bits are distributed in 
different bytes, they may lead to an error correction limit 
of only 32 bits (in the worst case). Distributed in the 128 
bytes (1024 bits) of the EPB for the main header, those 32 
error bits account for a BER of  3.10-2, which is clearly 
our error correction capacity, as can be seen in the results 
presented in Section 3. 

In order to limit byte padding two other default codes 
have been used: 
•  RS(45,25) for the first EPB marker segment of a 

Tile-part Header; 
•  RS(25,13) for the non-first EPB marker segments of 

both the Main Header and the Tile-part header. 
 

3. RESULTS 
 

In this section, some results about above described 
protection scheme are provided. In a first step, 
compliance tests are carried out, to address the problem 
of the backward compatibility. Then, tests on the 
robustness to errors of the detection of the number of 
image components are proposed. Finally, a comparison 
with the case without header protection is done in 
presence of noise, and the number of decoding leading to 
a decoder crash are counted. 
 
3.1. Backward compatibility compliance tests 
 
To ensure that the insertion of the EPB marker segments 
described in Section 2 allows as foreseen to keep 
backward compatibility with JPEG 2000 Part 1 decoder, 
compliance bitstreams (JPEG 2000 Part 4) embedding the 
EPB marker segments have been generated and tested 

with the different JPEG 2000 reference software. Those 
bitstreams, which are available for testing on the 
JPEG 2000 member's website (http://www.jpeg.org), 
were fully decoded and provided the same output as their 
counterparts without EPB marker segments. 
 
3.2. Synchronization tests 
 
As mentioned before, JPEG 2000 allows to work with 
multi-component images. As a result, the size of the 
headers to be protected increases with the number of 
components, and it was chosen to perform as first step 
before error correction a detection of the number of 
components of the image. This detection can be done by 
considering a hypothesis test on the number of image 
components (typically 1 or 3 which are the most likely 
figures in practice) using the expected associated 
redundancy. The more likely number of components is 
the one with the lowest error detection test. This detection 
can be viewed as synchronisation test, as we try to 
recover the start of redundancy in the compressed 
bitstream. 

Tests have been done to determine the robustness of 
such a mechanism in presence of errors. The case of a 
Binary Symmetric Channel (BSC) with various resultant 
Bit Error rates (BER) was considered. For a given image 
and a given number of components, the percentage of 
good detections of the number of components has been 
estimated. 

Table I shows the results obtained for image "Bike" 
(2048x2560, 1 component) and image "Lena" (512x512, 
3 components), both compressed at 0.5 bpp (bit per pixel) 
for various BERs. The probabilities of good detection 
were derived for 10000 independent noise realisations. 
For each realisation, the channel bit error rate constant 
through the image, which means that the compressed 
bitstream (headers and data) is uniformly corrupted. 

It can be seen that a highly reliable detection of the 

TABLE I 
PROBABILITY OF GOOD DETECTION AVOIDING A DECODING CRASH 
FOR ONE AND THREE COMPONENTS IMAGES CORRUPTED BY A BSC 

CHANNEL. 
BER on the 

BSC Image "Bike" Image "Lena" 

          10-3            1.0            1.0 
          10-2            1.0            1.0 
       2.10-2            0.99995            0.999 
       3.10-2            0.908            0.850 
       4.10-2            0.389            0.267 
       5.10-2            0.049            0.022 
       6.10-2            0.002            0.001 
       7.10-2            0.0            0.0 
          10-1            0.0            0.0 
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number of image components is obtained for a large 
range of BER. The error correction capabilities depend 
from the considered RS codes capabilities. This is 
illustrated in Fig. 5, where the obtained synchronisation 
results are compared with the considered RS(128,64) 
code performance. As foreseen due to the use of padding 
for images with a number of components different of 3, 
results for 'Lena' image are the same as the RS code ones, 
whereas those obtained for 'Bike' image are slightly 
better. Naturally, better results (a larger BER range where 
good detection are obtained) would be obtained by taking 

a more powerful code.  
Fig. 5. Performance comparison for synchronisation tests and 
standard RS decoding. 
 
3.3. Crash decoding tests 
 
Having tested the performance of the synchronisation 
process, we now consider the overall performance of the 
proposed system by tracking performance in terms of 
crash decoding. Errors occurring in header may indeed 
conduct to a crash of the decoding process, or to place it 
in a never-end state. As the focus of this paper is the 
study of error detection and correction mechanisms for 
the main and tile-part headers, our purpose is to show that 
such crashes in the decoding process can be avoided 
using the proposed header protection mechanism. Note 
that when no decoder crash occurs, i.e. when an output 
image is produced by the decoder, this image may still 
result from a codestream that include errors in the 
headers. In this case, the decoded image may or may not 
be damaged seriously, depending on the location of the 
error(s). For example an error occurring in an optional 
marker segment may have no impact on the decoded 
image, whereas an error in the image size will conduct to 
a bad result. In this section we consider only the fact that 
images can be decoded without freezing or crashing the 
decoder, whatever the result. It is to be noted that the 
crash behaviour strongly depends of the decoder 
implementation, and that given performances are only 
valid with the decoder used in the experiments, i.e. the 

Verification Model version 8.6. 
Once again, a BSC channel was considered for our 

experiments. The corresponding results obtained for both 
the mono and multi tile-part cases with the mechanism 
defined in Section 2 are compared to those obtained 
without using backward compatible error correction 
capabilities. 

As reference, Table II shows the results obtained for 
the "Lena" image compressed at 0.5 bpp, with one tile 
and one tile-part, when no EPB marker is considered. The 
probability of crash avoidance was derived for 1000 
independent noise realisations. Those results illustrate the 
dire need for header protection, as it is obvious that even 
for a BER as low as 10-4, the decoder may crash, leading 
to an interruption of the service, the obligation to re-
initialise the decoder ("reboot"), …. Let now compare 
these results to those obtained for the same image (still 
compressed 0,5 bpp) with the EPB marker embedded. 

Table III shows the results obtained firstly in the case 
where a unique tile-part is used and secondly in the case 
where the image is coded with five tile-parts. Once again, 
the probabilities of crash avoidance were obtained for 
1000 independent noise realisations. 

The results obtained in those various tables clearly 

TABLE II 
PROBABILITY OF AVOIDING A DECODING CRASH FOR "LENA" 

IMAGE CORRUPTED BY A BSC CHANNEL. 

BER on the BSC Image "Lena" 

                         10-4                         0.94 
                        10-3                        0.63 
                        10-2                        0.03 
                     2.10-2                        0.0 
                     3.10-2                        0.0 
                     4.10-2                        0.0 
                     5.10-2                        0.0 
                        10-1                        0.0 

0

0,2

0,4

0,6

0,8

1

1,2

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

Code RS(128,64)
Synchronisation for 'Bike' image
Synchronisation for 'Lena' image

TABLE III 
PROBABILITY OF AVOIDING A DECODING CRASH WITH THE EPB 
MARKER SEGMENT FOR "LENA" IMAGE CORRUPTED BY A BSC 

CHANNEL, IN THE MONO OR MULTI TILE-PART CASE. 

BER on the BSC Image "Lena" 
1 tile-part 

Image "Lena"
5 tile-parts 

          10-4              1.0              1.0 
          10-3              1.0              1.0 
          10-2              1.0              1.0 
       2.10-2              0.966              0.965 
       3.10-2              0.672              0.567 
       4.10-2              0.134              0.036 
       5.10-2              0.003              0.0 
          10-1              0.0              0.0 
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show the interest of the proposed EPB mechanism, for it 
provides a clear improvement of the decoder performance 
in presence of transmission errors in the JPEG 2000 
headers. Typically, for a bit error rate of 2.10-2 on the 
channel, almost all images are decodable (in more than 
96% of the cases) whereas the classical image 
systematically leads to a decoding crash. This is even 
more interesting those results are obtained both for the 
case of mono and multi tile-part, and for a very reduced 
overhead cost (about 0.35% for "Lena" images and about 
0.11% for "Bike" image), which reflects from the authors 
point of view the flexibility and efficiency of the 
proposed header EPB marker segment technique.  
 

4. CONCLUSIONS AND PERSPECTIVES 
 
A fully JPEG 2000 Part 1 compliant backward 
compatible error protection scheme for headers was 
proposed in this paper. The description of a new 
normative embedded marker segment was provided and 
tested with Reed-Solomon codes. Simulation tests were 
given, that show that the performance of the decoder can 
be significantly improved in terms of crash decoding for 
both mono or multi tile-parts, and with a reasonable 
decrease of compression efficiency. 

As an immediate perspective of interest, using the 
particularly flexible structure of the EPB marker segment, 
embedded Unequal Protection schemes can be envisaged 
for joint or tandem Source-channel coding. 
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