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Abstract — An optimised construction of variable-
length error-correcting codes (VLEC) is proposed in this
paper. Compared to the state-of-the-art, the three main
improvements consist first in improving the codewords
search algorithm complexity/efficiency trade-off, second in
loosening the codewords deletion rule, and third in taking
advantage of eventual previous searches. It is shown that
the optimised algorithm can find good VLEC codes for al-
phabets up to 200 symbols, and outperforms existing algo-
rithms.

Index Terms — variable-length error-correcting codes,
joint source-channel coding, variable-length codes, error
correction coding, code construction

I. INTRODUCTION AND MOTIVATION

Classically used in source coding for their compression ca-
pabilities, variable-length codes (VLC) [1] are often associ-
ated with channel coding techniques [2] which combat the
effects of a transmission channel (fading, noise, ...). Imple-
menting these two operations separately from each other is a
direct consequence of Shannon’s well known separation the-
orem [3], which states that the two operations can be done
separately without asymptotical performance loss. However,
this theorem neither holds for some classes of sources and/or
channels, nor offers any guarantee in terms of complexity and
practical feasibility. Since source coding aims at removing re-
dundancy and channel coding aims at reintroducing it, it is also
investigated how to efficiently co-ordinate the two techniques
to improve the overall system while keeping an acceptable
level of complexity [4]. Among the joint coding proposed so-
lutions, one finds the variable-length error correcting (VLEC)
codes [5, 6], which offer compression capability while provid-
ing error correction.

The VLEC codes ensure a minimal free distance over
block-like sequences, which makes especially sense when
used with the recently introduced approaches [7, 8, 9] for VLC
decoding. These techniques have in common the fact that they
consider the overall sequence of variable-length codewords to
perform Maximum A Posteriori (MAP) decoding, rather than
decoding each codeword instantaneously. Working whether
on trellises or code trees, these algorithms complement at the
decoding part the VLEC joint source and channel coding tech-
nique by taking advantage of the VLEC code free distance.

Introduced in 1995, the promising “Heuristic” construction
algorithm for VLEC codes proposed in [6] for short alpha-
bets remains very time consuming, becoming even prohibitive
for higher length alphabets sources. In this paper, we explore
several optimisation techniques that significantly decrease the

1C. Lamy is now with THALES Communications France, Gennevilliers,
France (catherine.lamy@fr.thalesgroup.com).

complexity of the Heuristic construction, and consequently al-
low to find good VLEC codes for large alphabets sources.

The paper is organised as follows. After the introduction of
some notations and definitions, the state-of-the-art Heuristic
algorithm is reviewed in Section II. The proposed optimisation
techniques are presented in Section III and numerical results
on their application are provided in Section IV. Finally, some
conclusions are drawn.

II. STATE-OF-THE-ART

A. Definitions and notations
Let

�
be a uniquely decodable [10] variable-length code of

cardinality ��� . Let � ����� and 	�
��
��� denote the length and the
probability of occurence of the data source symbol mapped
into word �
����
����������������� � ����� � in

�
, where ! � � �

��" � 	�
��
�#�$�&% .
Let ' be the number of different word lengths in

�
. We

denote these different lengths by ( � ��(*)+�����,����(*- , where
( �/. ($) . �,��� . (*- , and the corresponding number of code-
words by 0 � ��0
)����,���,�10
- , where ! -

��" � 0 � �2��� .

Definition 1 The average length 3/(4� ! � � �
��" � � �
�5� 	�
6�
�7� of

a code
�

is the average number of bits needed to transmit a
word.

Definition 2 Let 8 � �9�
�;:<�
��=?>,>�>��
��@ be a concatenation of 0
words of

�
. The set ACBD�FEHG �JI � G � �/�LKNM is called the

extended code of
�

of order N.

Definition 3 The Hamming weight OP
6��� of a word � is the
number of non-zero symbols in � . The Hamming distanceQ 
��
�1���SRT� between two words ��� and �SR of equal length is the
number of positions in which ��� and �SR differ.

Definition 4 The minimum block distance U,V associated to
the codeword length (WV of a code

�
is defined as the mini-

mum Hamming distance between all distinct codewords of
�

with length ($V .
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The overall minimum block distance Urq?s t of a code
�

is the
minimum block distance value for every possible length (kV :
U5q?s tu�vY[Z�\�5w V w - UrV .

Definition 5 The diverging distance xS
6�e�����SRT� (resp. the
converging distance y+
6�����1�SRT� ) between two codewords of dif-
ferent lengths � ����� and � �SRz� of a code

�
is defined as the Ham-

ming distance between the { -length prefixes (resp. suffixes) of
codewords ��� and �|R , with {/�}Y~Z�\uE�� �
�5�_�H� �SRz�_M .

xS
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Figure 1: Flowcharts of the GA and MVA algorithms.

The minimum diverging distance x q?s t (resp. min-
imum converging distance y q?s t ) of a code

�
is the

minimum value for all diverging (resp. converging)
distances between every possible couple of code-
words in

�
: x�q?s t�� Y[Z�\� ���7� � a��7� � ��� �������" � � a �

n x�
��
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n y�
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Definition 6 The free distance xg�,�5��� is the minimum Ham-
ming distance in the set of all arbitrary extended codes:
xz�T�5���k��Y[Z�\ n Q 
�8T�1��8<RT� I 8,����8rR� ¡A B ��K¢�£%������,�r�5¤¥o .
The free distance x��T���1� of a VLEC code is bounded by ([6]):

xz�T�5����¦§Y[Z�\¨
©U5q?s tg��x�q?s t/ª2y<q?s t+� (4)

Variable-length error correcting (VLEC) codes are de-
fined [6] as codes ensuring a free distance over block-like
sequences, and are denoted using the following structure:

60 ��« ( � �5U �T¬ 0
) « (*)+��U<) ¬ ���,� ¬ 0
- « ($-p�5U<- ¬ x q?s t ��y q?s t � .

B. Heuristic construction [6]
The Heuristic method [5, 6] relies on computer search to

construct an ��� symbol VLEC code
�

with specified over-
all minimum block, diverging and converging distances and
with codeword lengths matched to the source statistics so as to
obtain minimal average length for the chosen free distance.
In practice, one takes U q?s t �­x q?s t ª®y q?s t ��x �,�5��� and
x q?s t �°¯�x �T�5����±�²m³ . The Heuristic algorithm main steps are:
-

�
is initially set equal to a fixed-length code of length ( �

and minimal distance U q?s t . This step, as all following deter-
minations of sets of same length words at a given distance, is
carried out either by the greedy algorithm (GA) or the major-
ity voting algorithm (MVA) [6]. These algorithms, recalled in
Fig. 1, generate sets of 0 -bits long words distant of ´ .
- a set W is created, that contains all ( � -tuples with distance
x q?s t of each codeword in

�
. If W is not empty, one extra

bit is affixed at the end of all its words. This new set with
twice more words replaces the previous W. Each word in W
has length equal to ( � ª}% .
- all words in W that do not satisfy the y q?s t distance with all
codewords of

�
are deleted. At this point, W satisfies both

x q?s t and y q?s t distances with the VLEC code
�

.
- it is checked that all words of the set W are distant of U q?s t
with help of the GA or the MVA applied to the set W. Kept
words are then added to code

�
.

The algorithm is repeated until it finds the targeted num-
ber 0 of codewords or has no more possibility to continue. In
the case where the number of codewords in

�
is larger than

or equal to 0 , the average length of the corresponding candi-
date structure is calculated and compared to the current best
one. If it is better, this new AL value and the corresponding
VLEC are stored. The algorithm goes on with deleting code-
words among the last added group: half the group for the GA
and the “best” one for the MVA [6], and continues with above
described algorithm steps. In practice, the GA is quicker but
non-optimal, whereas the MVA is slower but more efficient.
In the case where no word is found, or if the maximal length is
reached, shorter length codewords are deleted, following the
deletion pattern mentioned above. Such deletions allow to ob-
tain more longer codewords, and are repeated until one finds a
possible VLEC structure.

III. OPTIMISING THE VLEC CODE CONSTRUCTION

Considering the Heuristic algorithm described above, we
first suggest a trade-off between the GA and the MVA. Then,
we propose to gain in simplicity by avoiding very unlikely
structures, by loosening the codewords deletion rule, and fi-
nally by taking advantage of eventual previous searches.

A. Greedy algorithm by step (GAS)
Following the idea that there should be a good compro-

mise on the use of the GA and MVA search algorithms and
their corresponding deletion rules, we propose a slightly mod-
ified algorithm. Called GAS for Greedy Algorithm by Step,
this solution relies on the GA search method, but only the last
codeword of the considered word group is deleted during the
deletion phases1. Searching over more solutions, the GAS is
consequently slower than the GA but offers similar or better
average length, as shown by simulation.

B. noHole optimisation
Based on the observation that whether in our simulations or

in litterature, almost none of the obtained best codes has a hole
(or jump length) in its structure length, i.e. no codeword at a
given length, we propose to consider that most good codes do
not have jump of length and reduce accordingly the set of ex-
amined VLEC codes. Following this hypothesis, the Heuristic
algorithm is modified, and useless parts are removed, leading
to complexity reduction.

C. ($µ optimisation
Considering the evolution of the codewords stack in the

classical Heuristic process, we propose to perform the code-
word deletion not only in the last obtained codewords group,
but more generally in any given length value group. This way,
it is possible to go back directly to smaller lengths, i.e. to
skip many algorithm steps in cases where there are too many
small length codewords. Denoting by ( µ (with ¶ for skip) the
length to which the algorithm will skip back in the codeword
deletion stage, we propose to skip parts of the original algo-
rithm by carefully jumping to lower lengths when looking for
codewords to be deleted. Naturally, when the considered code-
words group length ( is smaller than (Wµ , the classical method
is applied. Lengths between ( � and (·µ are called free lengths,

1As with the MVA, this may cause the loss of the resulting code linearity.



i.e. lengths with a freedom degree, which are decremented one
by one in the search process. Of course, when the number of
free lengths grows up, so does the simulation time. In prac-
tice, simulation results show that very good compression rates
can be obtained for (·µ . ( q?¸1¹ , where ( q?¸�¹ is the maximal
authorised codeword length. We observed that increasing the
value of (·µ resulted in an improvement in 3/( up until a con-
stant floor (best value). This behaviour prompts for a dynamic
choice of ($µ , starting with (·µ·�}( � , and incrementing it until
the floor is reached.

D. BestAllure optimisation
This last optimisation, that we have called BestAllure, pro-

ceeds from the remark that when updating the (kµ parameter
for a new search, no advantage is taken from eventual previous
searches. Following this lead, we propose to establish a semi-
recursive way to reach quickly higher (Wµ values, allowing us
to find better compression gains for acceptable computation
time. In practice, we will use this last optimisation with the
previously introduced GAS, noHole and Ls ones (eventhough
it is not a necessity).

We propose to keep in memory the beginning of the best
VLEC structure of each (·µ , and to re-use this knowledge
within the search with the next (·ºµ �¢( µ ª9% value. As ( µ
rises, the size of the beginning stored in memory increases ac-
cordingly to avoid a resulting increase of the free length, that
would exponentially impact on the computation time. In fact,
simulations tend to show that when ( µ increases, the begin-
ning of each code remains (quasi) constant for always more
lengths, justifying our interest in the pre-computed informa-
tion. Whereas the algorithm previously tested all combina-
tions for lengths in » ( � ��(·µ�¼ , it now does it only in a reduced
interval » ( V � � ��(·µ�¼ , where ( V represents the higher length of
the code beginning stored in memory. The number of free
lengths is now K ��½ �¾($µ|¿¡( V . To offer more flexibility to the
algorithm, we have even defined three levels of freedom:
- fixed length, which corresponds to the lengths where the
number of codewords is fixed from previous stages,
- variance length, which is the set of lengths where some free-
dom (e.g. ÀÁ% around the fixed codeword number) is allowed,
- free length, which corresponds to the set of lengths where all
possible numbers of codewords are tested.
As with (·µ optimisation, the rest of the length distribution, or
tail lengths, corresponds to lengths above the (kµ limit.

The variance length part results directly from practical ob-
servations, when it appeared during simulations that to im-
prove the results it was necessary to establish a slight freedom
on the number of codewords found at the higher fixed length
( V . Naturally, a generalisation of this variance length set can
also be considered for length smaller than ( V .

Together with the previous ones, the BestAllure optimisa-
tion provides huge gains of time. In practice, they are espe-
cially interesting for a source with high number of symbols,
where exhaustive methods cannot be applied and where exist-
ing ones, like Buttigieg’s one [6] are untractable.

IV. NUMERICAL RESULTS

To illustrate the different optimisations introduced in this
paper, we consider two sources: the first one is the well-known

symbol probability number of symbols
0.125254 2
0.062622 2
0.031311 6
0.015656 6
0.007828 20
0.003914 17
0.001957 27
0.000978 44
0.000489 28
0.000245 24
0.000122 32

Table 1: MPEG-4-like source statistics.

26-symbol English source [6] and the second one is a 208-
symbol MPEG-4 source, whose statistics are given in Table 1.
All simulations were carried out on the same Sun Ultra-80
computer, 440 MHz with full-time cpu, to allow the compari-
son of the algorithms execution time.

x �T����� �¾Â x �T�5��� �}Ã x �,�5��� �ÅÄ
method AL time AL time AL time
GA 6.4946 4 s 8.5061 15 s 10.79 2 min
MVA 6.3038 50 s 8.4752 16 min 10.7385 14 h
GAS 6.3494 42 s 8.5061 3 min 10.79 13 min
noHole 6.3530 17 s 8.5061 45 s 10.79 3 min

Table 2: VLEC codes for the 26-symbol English source with
GA, MVA, GAS and GAS+noHole optimisation.

with GA
( � AL time
3 9.0448 24 h
4 8.0464 41 h
5 7.9822 48 h
6 8.1106 20.5 h
7 8.3645 3 h
8 8.8054 25 min
9 9.3118 4 min

with MVA+ ( µ optimisation
( � ( µ AL time
5 9 8.0331 25 min

10 7.9527 38 h
9 9 9.3 60 s

10 9.285 2.5 h

GA+ ( µ optimisation
for ( � �¥Ã

( µ AL time
8 8.3133 2.5 s
9 8.0352 15 s
10 8.0086 92 s
11 7.9953 580 s
12 7.9822 80 min
13 7.9822 8 h
14 7.9822 48 h
15 7.9822 48 h

Table 3: VLEC codes for the 208-symbol MPEG-4 source
with x��T�����k�}Â and (*q?¸1¹¨�&%TÃ .

Reference results obtained for the English source with the
Heuristic algorithm for the GA and the MVA are given in Ta-
ble 2 for different values of x �T�5��� . As foreseen, the MVA
searches take much more time than the GA ones, and the GAS
modification offers same or better average length for higher
search time than the GA. Combining the GAS with the noHole
optimisation, it appears that noHole provides a time reduction
factor of about Â when compared to GAS, with only a slight
AL degradation. As for the MVA, the GAS complexity, with



x��,�5���k��Â xz�T�5���k�¾Ã xz�T�5���k�¾Ä
( � =4 (*q?¸1¹ =13 ( � =6 (*q?¸1¹ =15 ( � =8 (*q?¸1¹ =15

($µ AL time (s) AL time (s) AL time (s)
6 6.6356 0.017 - - x x
7 6.6350 0.08 8.5061 0.01 x x
8 6.6350 0.5 8.5061 0.03 10.79 0.02

10 6.6350 6.7 8.5061 0.76 10.79 0.17
13 6.6350 17 8.5061 45 10.79 12.8
15 x x x x 10.79 175

Table 4: Influence of noHole+ ( µ optimisations for the 26 sym-
bol English source.

( � �¥Ã ( � �}Æ ( � �ÅÄ
( µ AL time AL time AL time
8 8.3133 8 s 8.4905 13 s 8.5643 5 s
9 8.0346 8 min 8.1186 8 min 8.3413 3 min

10 7.9586 5 h 8.0737 4 h 8.3055 2 h
11 7.9392 1 week . . 8.2937 134 h

Table 5: Influence of (·µ optimisation for the 208 symbol
MPEG-4 source with GAS+noHole method.

or without noHole optimisation, would however be prohibitive
when applied to the MPEG-4 source. Table 3 shows as a ref-
erence the codes obtained with GA algorithm for the MPEG-4
source for various values of ( � . Focussing on minimal length
( � �}Ã which provides the best code with the GA, we have ap-
plied noHole and ( µ optimisations for various ( µ values and
found that it was possible to obtain a noticeable reduction fac-
tor, going from ÇzÈ hours to merely È+É minutes computation
time. For the same parameters, it was possible to combine the
MVA and the noHole and (Wµ optimisations, reaching even an
better AL.

Results obtained with (·µ optimisation for the English
source are presented in Table 4, where crosses (x) indicate im-
possible values for (·µ and where dashes ( ¿ ) to cases where
the algorithm could not find any solution for the given initial
parameters. Comparing these results with those in Table 2, it
appears possible to obtain better or at least equivalent results
to GA algorithm with a time reduction factor larger than %TÉ .
The time computation gain offered by this ( µ optimisation af-
fords us to find computation gain from about Ã for x��,�5���u�ÊÂ
to about ² Ã�É�É for x��T�5���k�¾Ä .

The gain offered by ( µ optimisation is even more notice-
able with the MPEG-4 source. Indeed, the results given in
Table 5 justify the use of the GAS together with the noHole
and ( µ optimisations: while the best AL achieved with GA
and ($µ optimisation leads to 3/(Ë�ÅÄ�� Ì+È ²+² for two days com-
putation time, we find with GAS a better VLEC code with
3/(§�ÅÄ�� Ì�Ã+È+Æ in only Ã hours. Moreover, it is to be noted that
this result is extremely close to the best one obtained with the
MVA algorithm combined with noHole and (Wµ optimisations
(reaching 3/(Í�LÄ�� Ì�Ã ² Ä in Â+È hours, as shown in Table 3),
and that GAS provides an even better code with 3�(Ë�¾Äg� Ì�Â+Ì ²
with ($µ¨�Î%�% in one week. With such a parameter the MVA
complexity is prohibitive.

Finally, Table 6 shows the results obtained for the MPEG-4
source with BestAllure optimisation for K[�,½Í� Â or Ç

with K ��½ =3 with K ��½ =4
($µ AL time AL time
8 8.0162 27 s x x
9 7.9734 7 min 8.0346 6 min

10 7.9489 14 min 7.9586 3 h
11 7.9475 32 min 7.9392 8 h
12 7.9464 1 h 7.9379 21 h
13 7.9455 2.5 h 7.9379 65 h

Table 6: Results of BestAllure optimisation for the 208 symbol
MPEG-4 source.

free lengths. The best overall VLEC code for this source
( 3�(Ï� Äg� Ì�ÂzÄmÌ for code (1@5,-;2@6,3;7@7,3;9@8,3;8@9,3;
12@10,3;21@11,3;30@12,3;37@13,3;40@14,3;41@15,3;2,1)) is
found in about Â ² hours. This confirms that BestAllure allows
for huge gain of time while providing very good results.

V. CONCLUSIONS

We have presented in this paper various optimisations for
the Heuristic construction method of variable-length error cor-
recting codes introduced in [6]. It was in particular shown
that better VLEC codes could be obtained by taking advan-
tage from previous searches in the BestAllure semi-recursive
optimisation. Especially interesting for sources with a large
number of symbols, where exhaustive methods are prohibitive,
our optimisations allow to obtain codes fitted to the considered
source while keeping error-correction capability.
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