
ITW2003, Paris, France, March 31 – April 4, 2003

Lower bounds on the existence of binary error-correcting variable-length codes
Catherine Lamy1

Philips Recherche France, Suresnes, France
lamy@ieee.org

François-Xavier Bergot
Paris, France

francois-xavier.bergot@enst.fr

Abstract — This paper deals with codes that combine
source and channel encoding operations. After discussing
the potential usefulness of these variable-length error cor-
recting (VLEC) codes, necessary conditions on their length
distribution are established. It is shown that, depending on
the targetted application, several families of VLEC codes
can be defined, whose conditions of existence differ.

Index Terms — variable-length error-correcting codes,
variable-length codes, error correction coding, joint
source-channel coding, bounding methods

I. INTRODUCTION

Traditionally, the two antagonistic encoding operations
of compression and error correction are separated from
each other, following Shannon’s well-known separation the-
orem [1] which states that source coding and channel cod-
ing can, asymptotically with the length of the source data,
be designed separately without any loss of performance for
the overall system. For instance, variable-length codes (VLC),
which are classically used in source coding for their compres-
sion capabilities, are often associated with Forward Error Cor-
rection (FEC) techniques [2] which combat the effects of a
real transmission channel (fading, noise, . . .). It has however
been shown that separation does not necessarily lead to the less
complex solution [3], nor is always applicable [4]. In particu-
lar, joint source and channel coding (JSCC) can offer better so-
lutions in wireless communications, offering a complexity re-
duction of the overall system while maintaining a satisfactory
performance. Quite recently, JSCC techniques that include a
co-ordination between source and channel encoders were in-
vestigated, and techniques were developed that improve both
encoding and decoding processes while keeping the overall
complexity at an acceptable level [5]. Although these methods
rely on a collaboration between both coders, they still keep the
encoders and decoders separated. Another approach consists
in using codes that offers both good compression and error
correction capabilities [6].

We explore in this paper the possibility of performing both
compression and error correction in a single coding step. Such
an error correcting and compressing process is done here us-
ing codewords of varying lengths that have particular distance
properties with each other, which allows to enable error detec-
tion and correction. The codes will hence be called Variable-
Length Error Correcting (VLEC) codes in the following. In
this contribution, the goal is set to establish existence condi-
tions for the different considered families of VLEC codes.

The paper is organised as follows. The potential usefulness
of error detecting/correcting and compressing codes is dis-

1C. Lamy is now with THALES Communications France, Gennevilliers,
France (catherine.lamy@fr.thalesgroup.com).

cussed in Section II and illustrated with an example. Known
families of VLEC codes are reviewed and a new one is intro-
duced in Section III. Generalisations of the Kraft-MacMillan
inequality are then proposed in Section IV for two families of
variable-length error correcting codes. Finally, some conclu-
sions are drawn.

II. MOTIVATION FOR ERROR DETECTION/CORRECTION

AND COMPRESSION CODING

Although separated coding has long been the most consid-
ered one in the literature and research community, it is well-
known that a joint approach provides potential benefits over
a traditional two-step approach. Let us consider for instance
the two reversible variable-length codes (RVLC)

���
, which

is a truncated Golomb-Rice code [7], and
���

given in Ta-
ble 1. While from a compression point of view, these two
codes are equivalent as they offer the same compression rate���	��

��������� �
�

bits/symbol, it is easy to see that all code-
words of identical length of

���
differ at least by two bits. As

a consequence,
� �

offers better performance than
� �

. For in-
stance, simulation results show a gain greater than

�
dB at bit

error rate ����� ����� �"!
over an additive white Gaussian noise

(AWGN) channel with binary phase shift keying (BPSK) mod-
ulation and soft-input VLC decoding [8].#�$

[7]
#&%' (*)+'�, -�. $0/)+'�, -1. %2/)+'�,

A 4/14 00 00
B 4/14 01 11
C 2/14 110 101
D 2/14 111 010
E 1/14 1010 1001
F 1/14 1011 01103

(bits/symb) 18/7 18/7

Table 1: Two different RVLC designs.

It is also to be noted that efficient VLEC codes, once found,
can easily be used in practical applications. As a matter of
fact, the VLEC encoder can be trivially implemented using a
lookup table and the VLEC decoding can be carried out ei-
ther by an adaptation of the classical VLC hard decoding with
searching for a match between the input bit strings and the
codeword list, this relying on distance computations, or by
an efficient and low-complexity soft-input decoder such as the
one presented in [8].

Thus far however, no algorithm or construction has been
discovered that finds the optimal VLEC code for a particu-
lar input data set without relying on some sort of exhaustive
computer screening, whatever clever this one may be. In the
absence of construction algorithm such as the Huffman one [9]

to build VLEC codes, it is desirable to have an analytical ap-
proach that will allow to test any integer list representing code-
word lengths to check if they could be the codeword lengths
of a valid VLEC code. Such an analytical approach could for
instance be used to direct and speed up a code generation al-
gorithm such as the “Heuristic” method proposed by Buttigieg
in [6] for a given family of VLEC codes (see Section III-B).

III. CODES COMBINING ERROR CORRECTION AND

COMPRESSION CAPABILITIES

Several approaches have been introduced recently in [6,
10], to perform combined error correction and compression.
These schemes consider variable-length codes for source cod-
ing and respect a minimum distance between each codeword
for protection against channel errors. Let us introduce some
notations and definitions to classify the families of VLEC
codes.

A. Definitions and notations
Let

�
be a uniquely decodable [11] variable-length code of

cardinality 465 . Let 7 8:9;7 denotes the length of each word 8<9
of

�
. Let = be the number of different word lengths in

�
.

We denote these different lengths by > �@? > �A? �B�B� ? >DC , where> �FE > �*E ���B� E >GC , and the corresponding number of code-
words by H �I? H �A? �B�B� ? HJC , where K C9ML � H 9 � 4 5 .

Definition 1 Let 8 �ONQP � ? �B��� ? PSR T�R U
be a word of

�
. A se-

quence
NVP�W ? ���B��P�XYU

,
�[Z]\6Z_^FZ 7 8G7 is a sub-word of 8 .

Definition 2 Let ` 9 � 8J9bac8J9edGfBf�f�8J9eg be a concatenation of H
words of

�
. The set hSi �kj ` 9ml 7 ` 9 7 �onqp

is called the
extended code of

�
of order N.

Definition 3 The Hamming weight r N 8 U of a word 8 is the
number of non-zero symbols in 8 . The Hamming distances N 8J9 ? 8"t U between two words 8:9 and 8"t of equal length is the
number of positions in which 8:9 and 8"t differ.

Definition 4 The sliding distance u N 8:9 ? 8"t U between two code-
words 8J9 and 8�t of lengths 7 8:9;7 and 7 8"t&7 of a code

�
is de-

fined as the minimum of the Hamming distances between the^
-length codeword and every sub-word of length

^
of the other

codeword, with
^v�xwzyM{*j 7 8:9|7 ? 7 8"t&7 p .

u N 8 9 ? 8 t UG� wzyM{}�~���~F� �;�2�����}"~��<~F� �|�������
� s NQP 9�@� � fBf�f P 9�@� X ? P t � � � f�fBf P t � � X U��<�

The minimum sliding distance uI��� � of a code
�

is the minimum
value for all sliding distances between every possible pair of
codewords in

�
: u@��� � � w�ye{� T ��� T �|��� 5 � 9��L"t<� u N 8 9 ? 8 t U�� .

Definition 5 The minimum block distance � W associated to
the codeword length > W of a code

�
is defined as the mini-

mum Hamming distance between all distinct codewords of
�

with length > W .� W � w�yM{� �|���+�|�|�� <¡�� � ¢£ �� � � � £ � � � � £¥¤§¦ � s N 8 9 ? 8 t U � �
The overall minimum block distance � ��� � of a code

�
is the

minimum block distance value for every possible length > W :�Y��� � �¨w�yM{�Y© W © C � W .

Definition 6 The diverging distance ª N 8<9 ? 8"t U (resp. the
converging distance « N 8:9 ? 8"t U) between two codewords of dif-
ferent lengths 7 8:9;7 and 7 8"t
7 of a code

�
is defined as the Ham-

ming distance between the
^
-length prefixes (resp. suffixes) of

codewords 8:9 and 8�t , with
^v�xwzyM{*j 7 8J9Y7 ? 7 8"t
7 p .ª N 8 9 ? 8 t UG� s NVP 9 � f�fBf P 9X ? P t � f�fBf P t X U ?« N 8 9 ? 8 t U�� s NVP 9 R T � R � X � � f�fBf P 9 R T � R ? P t R T � R � X � � f�fBf P t R T � R Uc�

The minimum diverging distance ª
��� � (resp. mini-
mum converging distance «B��� �) of a code

�
is the min-

imum value for all diverging (resp. converging) dis-
tances between every possible couple of codewords in�

: ª1��� � � w�yM{� T � � T � ��� 5 � R T � R �L R T � R � ª N 8J9 ? 8"t U � and «c��� � �w�yM{� T � � T � ��� 5 � R T � R �L R T � R � « N 8J9 ? 8"t U � .

Definition 7 The free distance ª ¬�­ ��� is the minimum Ham-
ming distance in the set of all arbitrary extended codes:ª ¬@­ ��� �xw�ye{ � s NV® 9 ? ® t U l ® 9 ? ® t*¯°h i ? n±�²� ? �B��� ?Y³ �

.
The free distance ª ¬@­ ��� of a VLEC code is bounded by ([6]):ª
¬@­ ���F´ w�ye{µN �Y��� � ? ª���� �·¶¸«c��� � U (1)

B. VLEC types
We can classify the approaches to VLEC codes into three

categories. One category of codes that we denote by family I,
corresponds to VLEC codes such that a minimum Hamming
distance is maintained between codewords, in order to enable
error detection and/or correction. As such, these codes dif-
fer from traditional Huffman codes in their treatment of the
prefix property: instead of having simply different codeword
prefixes, the prefixes must now be a minimum diverging dis-
tance ª���� � apart from each other, offering an error correction
capacity ¹ ��º�N ª���� �"» �IU|�A�§¼

.
��½

given in Table 2 is an example
of such a code with ª���� � �x¾

.#�¿ #�À #
Á' - . ¿ /)+'�, - . À /)+'�, - . Á /)+' ,
A 0000 0000 0000
B 11100 110111 1110
C 101110 101110 10011
D 011111 011101 01010

Table 2: Examples of VLEC codes.

In a second class, named family II, we place codes that
maintain a minimum sliding distance u ��� � between code-
words, offering an error correction capacity ¹ �Âº�N u ��� � »�@U|�1�I¼

. Considering indeed that variable-length codes are not
only susceptible to bit errors but also to loss of synchronisa-
tion, protecting only their prefixes may indeed not be enough.
As a matter of fact, when synchronisation is lost, prefixes may
be shifted. In such cases, the minimum diverging distance is
no longer guaranteed and catastrophic error propagation may
occur.

� ! given in Table 2 is an example of such a code withuB��� � �Ã¾
.

A third class, called family III, is the class of codes ensuring
free distance over block-like sequences. Indeed, several ap-
proaches [5, 12, 8] have recently been introduced to improve

decoding of variable-length codes, that have in common the
fact that they consider the overall sequence of variable-length
codewords to perform the decoding rather than decoding each
codeword instantaneously. Whether working on trellises or
code trees, these approches are all able to perform optimal se-
quence based Maximum A Posteriori (MAP) decoding. As
such, these techniques do not rely on the Hamming distance
or sliding distance between the codewords, but on the code
free distance, as pointed out by Buttigieg [6].

��Ä
given in Ta-

ble 2 is an example of such a code with ����� � �Å¾
, ª1��� � �Æ�

and «c��� � �Ç�
, resulting in ª&¬@­ ��� �x¾

.

IV. EXISTENCE OF VARIABLE LENGTH ERROR

CORRECTING CODES

The Kraft-MacMillan inequality [11] establishes a lower
bound on the existence of a uniquely decodable prefix code
given a set of codeword lengths. Following the studies done
by Wenisch et al. [10] for family I of VLEC codes, which re-
sulted in the following existence condition

ÈÊÉF�ÆË ¡Ì
9ML �

� � R T � RÎÍÌ
t|LÐÏ

Ñ 7 8J9Y7ÒxÓ ZÔ� ?
(2)

we propose to establish similar bounds for families II and III.
Let Õ be an > C dimensional binary space in the following.

A. Bound for family II codes
Let u���� � be the targetted minimal sliding distance, resulting

in a desired error correction ¹ �Öº�N u@��� �µ» �IU|�1�I¼
. To achieve

error correction ¹ , to each codeword in
�

must correspond one
of a set of non-overlapping regions in Õ . Specifically, a code-
word 8:9 occupies all points in Õ whose coordinate representa-
tion contains 8 9 as a sub-word or any version of 8 9 with up tor changes to it. The total number of points in Õ occupied by

such a codeword is × R T � RØ�Ù � Í , as detailed in Appendix.
For the code to exist, the total number of points occupied

by all the codewords can not exceed the space cardinality
� Ø�Ù

,
which results in the following MacMillan-like inequality:

ÈFÉYÉF�ÆË ¡Ì
9ML �

� � Ø�Ù × R T � RØ Ù � Í � CÌ
9eL � H 9� Ø�Ù × Ø �Ø Ù � Í ZÚ�1�

(3)

where × Ø �Ø�Ù � Í is derived by recurrence from equations (7)-(9).

B. Bound for family III codes
From equation (1), ª ¬@­ ��� relies on the three distances ª
��� � ,«c��� � and �c��� � and not on a unique one as family I and family II

codes do. As a consequence, we obtain the three following
conditions for family III codes.

The first condition comes from the minimal diverging dis-
tance ª���� � . To ensure such a distance between words, to each
codeword of

�
must correspond one non-overlapping region

of Õ . Each prefix of length 7 8:9Y7 whose coordinate represen-
tation contains 8:9 as a sub-word or any version of 8:9 with up
to

º�N ª1��� �[» �IU|�A�§¼
changes in it, is forbidden. It results in the

elimination of all points in Õ whose coordinate representations
begin with such a forbidden prefix, i.e. in the discarding ofKÅÛ �MÜYÝ�Þ ß � � �Và ��át|LÐÏ â � Ø�Ù � R T � R�ã R T � Rtåä�æ points. Hence, for the code

to exist, we have our first condition

È Ü Ý�Þ ßÉYÉYÉ � CÌ
9ML � H 9� Ø � Û|ç

Ý�Þ ß � ad áÌ
t|LÐÏ

Ñ > 9Ò*Ó ZÔ�1�
(4)

It is to be noted that this first condition is the same as the
one obtained for family I in equation (2), which is due to the
fact that in both cases we consider the distance on the prefixes.

The second condition is imposed by the minimal block dis-
tance. This distance condition concerns only words of equal
length, but does not impose anything when word lengths dif-
fer. As a consequence, we must work at fixed depth in the
code tree, just as would be done for fixed-length codes. For
every possible length > 9 in the code tree, we find

� Ø � possible
nodes. Among those, when there are at least two candidate
words at same length > 9 , i.e. H 9 ´ �

, we need to exclude
the nodes whose coordinate representations are any version of
candidate words with up to

º�N ����� �Ê» �IU|�A�§¼
changes in it, that

is, H 9 K Û � � Ý�Þ ß � � �Và ��át|LÐÏ ã Ø �t ä words. Verifying for each length > 9
that the total number of occupied and eliminated nodes is infe-
rior to

� Ø � , we obtain our second set of conditions on the code
existence

È � Ý�Þ ßÉ;ÉYÉ NQè�U�� N�� »êé �ë � U H 9� Ø � Û|ì Ý�Þ ß � ad áÌ
t|LÐÏ

Ñ > 9Ò[Ó Zí� ? �*Z_èDZ =
(5)

where é is Kronecker’s symbol. This condition is in fact
the classical sphere-packing bound on the size of an error-
correcting code of given length and minimal distance. This
bound has been improved [13] and is still a research prob-
lem [14]. Such refinements remain however too complex to
be given here but may be similarly applied.

The third condition results from the minimal converging
distance «c��� � . This imposes a distance only on the suffixes
of the codewords, but allows a word to contain as internal sub-
word, the suffix of another. As a consequence, we can not
proceed similarly as in the

È Ü Ý�Þ ßÉYÉ;É bound case, but we will con-
sider the leaves at each depth > 9 of the code tree. For each
depth > W in the code tree with > W E > 9 , we have H W possible
suffixes and we must exclude the points that would correspond
to those suffixes among the candidate words of length > 9 . For
each length > 9 , we consequently need to rule out

ã Ø ¦t ä possi-
ble versions of the suffix with

Ò
up to

º�N «B��� �[» �@U|�1�I¼
and yet

have at least H 9 possible candidate words. Hence, a third set of
conditions for the code to exist, is given by

Èïî Ý�Þ ßÉYÉYÉ NVè ? \�U�� H 9� Ø � ¶ H W� Ø ¦ Û|ð Ý�Þ ß � ad áÌ
t|LÐÏ

Ñ > WÒñÓ ZÔ� ? �[Z]\ E è�Z =
(6)

It is to be noted that the three conditions given by inequal-
ities (4), (5) and (6) can not be merged into a unique one. In-
deed, they do not correspond to similar exclusion rules, and
work on different parts of the code tree. The first one corre-
sponds to the initial branches of the tree, the second to words
of equal lengths, i.e. to tree nodes of given depth, and the last,
to leaves.

C. Numerical example
To illustrate the interest of the bounds determined in this

Section, we have aplied them to the length distributions
of the codes

� ! and
� Ä

introduced in Table 2 for different
values of u���� � , ª1��� � , �Y��� � and «c��� � . The results obtained
are given in Table 3. It is easy to see that they allow to
rule out some cases, while confirming the status of other
combinations as “possible”. For instance, we see that

��Ä
length distribution is incompatible with ª
��� � �ò¾

, whereas it
allows the combination ª
��� � �ó�

, �Y��� � �ó¾
and «c��� � �ô�

,
yielding ª&¬@­ ��� �õ¾

. In the same way,
� ! length distribution

can never verify �c��� � ���
, but is compatible with the bound

on sliding distance u ��� � �í¾
.

bound expression
¿ # À # ÁöD÷�÷

(øcùÐú û =3) 0.953125 0.8125 1.1875ö ÷�÷
(ø ùÐú û =5) 2.125 1.875 2.5625ö·ü Ý�Þ ß÷�÷�÷ (ý ùÐú û =2) 0.125 0.109375 0.1875ö·ü Ý�Þ ß÷�÷�÷ (ý ùÐú û =3) 0.71875 0.640625 1ö ü Ý�Þ ß÷�÷�÷ (ýAùÐú û =5) 1.875 1.71875 2.375þµÿ��a ~ � ~ Ùì Ý�Þ ß £�� ö�� Ý�Þ ß÷�÷�÷)��0, 0.21875 0.328125 0.625þµÿ��a ~ � ~ Ùì Ý�Þ ß £�� ö � Ý�Þ ß÷�÷�÷)��0, 0.6875 1.03125 1.375þµÿ	�a ~ ¦�
 � ~ Ùð Ý�Þ ß £ a

ö
� Ý�Þ ß÷�÷�÷)�������, 0.09375 0.109375 0.1875þµÿ	�a ~ ¦�
 � ~ Ùð Ý�Þ ß £�� ö
� Ý�Þ ß÷�÷�÷)�������, 0.34375 0.359375 0.6875þµÿ	�a ~ ¦�
 � ~ Ùð Ý�Þ ß £�� ö
� Ý�Þ ß÷�÷�÷)�������, 0.71875 0.734375 1.4375

Table 3: Example of an application of the bounds for VLEC
codes.

V. CONCLUSIONS

We have presented analytical bounds on the existence of
different families of binary VLEC codes. In that way, we have
extended research provided in [10], where only one family of
variable-length error correcting codes was studied. It has been
highlighted that such bounds could be used to help generate
VLEC codes more efficiently, as they allow to avoid impossi-
ble structures. The adaptation of the methods exposed in this
paper in the case of non-binary variable-length codes is left for
further studies.

APPENDIX

Let us denote by � N�� ? × U the cardinality of the set of strings
of length

�
, that end by padding × ��� � � � fBf�f ��X of length^

and that do not contain a sub-word of Hamming weight in-
ferior or equal to ¹ . Let × X Ø � Í be the cardinality of the set of
strings of length > that contain a given sub-word of length

^
or

a modified version of it with up to ¹ changes. It is easy to see
that × X Ø � Í is also the number of words of Õ having a sub-word8 of length

^
with Hamming weight r N 8 U Z ¹ , i.e. that× X Ø � Í �x� Ø » Ì � � N > ? × U�� (7)

Now let iteratively derive � N > ? × U .
Initialization step: � NQ^ ? × UG��� �

if r N × U¥Z ¹�
otherwise

Recurrence relation: noticing that a string of length
� ¶ �

ending with padding × ��� � � � fBf�f ��X is the concatenation of
one bit and a string of length

�
ending with padding ×�� ���� � � � fBf�f ��X � � or ×�� � � ��� � � � fBf�f ��X � � , we have:

� N�� ¶ � ? × U���� �
if r N × U Z ¹� NVP ? ×�� U ¶�� NQP ? ×�� � U otherwise

This leads to the following matrix expression: !!!" � N�� ¶ � ? ���e�M� �1��U� N�� ¶ � ? ���e�M� ���@U
...� N�� ¶ � ? ���e�M�M�1�@U

#	$$$% �'& !!!" � N(� ? ���e�M� �1��U� N(� ? ���e�M� ���@U
...� N(� ? ���e�M�M�1�@U

#	$$$% (8)

where the recurrence matrix
& �ÇN(� 9 � t U is defined by� 9 � t ��� �

if r NQè�U�) ¹ and
Ò ¯ j�º+è��1�I¼+*&º�N � X ¶ è�U;�A�I¼�p�

otherwise.
(9)

REFERENCES

[1] C.E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pt. I, pp. 379–423, 1948; pt. II, pp. 623–656, 1948.

[2] G. Battail, Théorie de l’information. Paris: Masson, 1997.

[3] J.L. Massey, “Joint source and channel coding”, in Communication Sys-
tems and Random Process Theory, NATO Advanced Studies Institutes
Series E25, J. K. Skwirzynski editor, pp. 279-293. Sijthoff & Noord-
hoff, Alphen aan den Rijn, The Netherlands, 1978.

[4] S.B. Zahir Azami, P. Duhamel and O. Rioul, “Joint source-channel cod-
ing: panorama of methods,” in Proceedings of CNES workshop on Data
Compression, Toulouse, France, November 1996.

[5] N. Demir and K. Sayood, “Joint source/channel coding for variable
length codes,” in Proceedings of the Data Compression Conference,
pp. 139–148, Snowbird, USA, March-April 1998.

[6] V. Buttigieg, Variable-length error-correcting codes.
Ph.D. dissertation, University of Manchester, Manchester, United King-
dom, 1995.

[7] S.W. Golomb, “Run-Length encodings,” IEEE Transactions on Infor-
mation Theory, vol. 12, pp. 399–401, July 1966.

[8] L. Perros-Meilhac and C. Lamy, “Huffman tree based metric derivation
for a low-complexity sequential soft VLC decoding,” in Proceedings of
ICC’02, pp. 783–787, New York, USA, April-May 2002.

[9] D.A. Huffman, “A Method for the Construction of Minimum Redun-
dancy Codes,” in Proceedings of the Institute of Radio Engineers,
vol. 40, pp. 1098–1101, September 1952.

[10] T. Wenish, P.F. Swaszek and A.K. Uht, “Combined Error Correcting and
Compressing Codes,” in Proceedings of ISIT’01, p. 238, Washington,
DC, USA, June 2001.

[11] T.M. Cover and J.A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, 1991.

[12] M. Park and D. J. Miller,“Joint source-channel decoding for variable-
length encoded data by exact and approximate MAP sequence estima-
tion,” IEEE Transactions on Communications, vol. 48(1), pp. 1–6, Jan-
uary 2000.

[13] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, chap. 17, Amsterdam: North-Holland, 1977.

[14] B. Mounits, T. Etzion and S. Litsyn, “Improvement on the Johnson upper
Bound for Error-Correcting Codes”, in Proceedings of ISIT’02, p. 345,
Lausanne, Switzerland, July 2002.

