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Abstract

We establish a simple relation between high diversity multidimensional rotations
obtained from totally complex cyclotomic fields and the discrete Fourier transform.
The diversity distribution of an Hadamard-like random rotation is derived analyt-
ically. It is shown that a random multidimensional rotation exhibits an excellent
diversity distribution and can be combined to QAM constellations to combat chan-
nel fading. We also describe a mean square error (MSE) universal lattice decoder
suitable for large dimensions up to 1024. The MSE criterion treats the lattice struc-
ture as intersymbol interference. The universal decoder is applied to both Gaussian
and Rayleigh fading channels to decode dense lattice sphere packings and rotated

cubic constellations respectively.
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1 Introduction

A lattice is a discrete subgroup of rank n in the real n-dimensional space IR™ [1]. Dense
lattice constellations are a good mean to achieve a reasonable coding gain on the Gaus-
sian channel with high spectral efficiency. The maximum likelihood (ML) decoding of a

lattice A is equivalent to finding the lattice point x at a minimum Euclidean distance to



the received point r. This task is too complex especially for large dimensions. Integer
lattices built by constructions A and B can be decoded with a multistage technique based
on soft decision decoding of the constituent linear binary codes [1], [2]. Many decod-
ing algorithms for the Gaussian channel are also known for some dense integer lattices
(2], [3], [4]. Recently, a sub-optimal algorithm (generalized minimum distance algorithm,
GMD) for integer lattices [5] has been described for decoding over the Gaussian channel.
All these algorithms have been developed for the Gaussian channel and they are mainly

based on the soft decision decoding of linear codes.

Firstly presented by Boullé & Belfiore [6] in the two-dimensional real space, and then
extented to dimensions up to 5 in [7], the idea of rotating a quadrature amplitude mod-
ulation (QAM) constellation was proven to increase the diversity order on the flat fading
Rayleigh channel by spreading the information contained in each component over several
components of the constellation points. Multidimensional algebraic rotations have been
recently derived [8] in a real or a complex space with half or full diversity orders and no
limit on the space dimension. Algebraic number theory has been also applied to construct
coded and uncoded lattice constellations with high diversity orders [9], [10]. Kerpez pro-
posed integer high diversity constellations [11] which can be used to combat fading, but as
shown in [7] they do not outperfom rotated cubic constellations due to their large average

energy per component.

The coherent ML decoding on a Rayleigh channel is equivalent to the minimization of
v — a*xx||* = X" |ri — oz |?, where {;} are the real Rayleigh distributed fading co-
efficients. For this channel, the lattice density producing a positive gain on the Gaussian
channel has no more effect. The performance of a lattice on the Rayleigh fading channel
depends on its diversity given by the Hamming distance distribution of the lattice points.
High diversity rotated integer and integral lattices cannot be decoded using Gaussian
channel algorithms mentioned above. Universal sphere decoding of lattices [12] is a mean
to decode any lattice on both Gaussian and Rayleigh fading channels. This algorithm is

maximum likelihood but its complexity limits its use to dimensions less than or equal to 32.



In this paper, we study the diversity distribution of Hadamard, Fourier and random or-
thogonal transforms (i.e. multidimensional rotations) and describe a lattice decoder based
on the minimization of the mean square error for the decoding of high dimensional constel-
lations. Firstly, a simple relation is established between high diversity multidimensional
rotations obtained from totally complex cyclotomic fields [8] and the discrete Fourier
transform. Further, the diversity distribution of random +1 Hadamard-like matrices is
derived analytically. Then, we describe a sub-optimal universal algorithm for decoding
an arbitrary lattice A in dimensions up to 1024 for both Gaussian and Rayleigh fading
channels. This algorithm is based on the Minimum Mean-Square-Error (MSE) criterion.
Instead of minimizing the Fuclidean distance, the MSE decoder minimizes the expectation
of the squared error in the integer space Z" before applying the lattice generator matrix.
The first version of an MSE equalizer (as a decision feedback equalizer DFE) has been
presented in [13] for decoding Hadamard and Fourier matrices over the Rayleigh fading
channel. This paper generalizes the MSE decoding for any n-dimensional real or complex
lattice. The excellent performance obtained in [13] are explained by the lattice diversity
distribution (see section 3). Surprisingly, in the fading channel case, rotated lattices se-
lected at random perform as good as those built algebraically, e.g. rotated versions of the

cubic lattice Z" denoted by Z,, ;, where L is the lattice diversity order.

The paper is organized as follows : Section 2 gives the definition of the lattice gain on
the Gaussian channel and the lattice diversity on the Rayleigh fading channel. Section
3 describes the relation between algebraic rotations and fast transforms. The diversity
distributions of random %1 matrices, Fourier matrices and Z,, ,,/; rotations are compared
in this section. Section 4 presents the MSE decoding of lattices based on decision feedback
block equalization. Section 5 shows the performance of the MSE decoder applied to the
Barnes-Wall lattice BWjs56 and the rotated lattice Zs;q 256 (equivalent to a complex 256-

dimensional rotation) and finally section 6 draws out the conclusions.



2 The performance of a lattice code : density and
diversity

The system model using a lattice constellation is shown in Fig. 1. On the Gaussian
channel, the point error rate P, of this system decreases exponentially as the signal-to-

noise increases. For a cubic constellation, the error probability is given by [10]

T 3s y
P. ~ 3 erfc (\/25+1 X A X ’y(/\)) , (1)

where s is the number of bits per two dimensions and 7 is the lattice kissing number. The

parameter v(A) is the fundamental gain of A. On the Rayleigh fading channel, the point

error rate decreases linearly with a slope of order L [10]

7
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=L <8N0)

The positive constants K; depend on the choice of the lattice A. The lattice diversity L

(2)

and the fundamental y(A) are defined below.

The fundamental gain y(A) of a lattice on the Gaussian channel is due to its high packing

density. The gain is given by the following ratio (Hermite’s constant, [1] p. 20, pp. 71-74)

d2 min
Y(A) = =

3/vol(A) 7

where dgpin is the minimal Euclidean distance of A and vol(A) is the fundamental vol-
ume. Thus, the gain increases with the lattice density since a higher density means a

larger Euclidean distance and a smaller fundamental volume.

The diversity order L of a lattice A is the minimum number of distinct components be-
tween any two points belonging to A, L = minyyea dg(X,y). Maximizing the diversity

is the best way to reduce the error probability on the Rayleigh fading channel.

It has been shown in [8] that a multidimensional rotation increases the diversity of a
lattice code. As illustrated in Fig. 2 on a 4-PSK, a simple rotation increases the diversity
from L =1 to L = 2. A system based on multidimensional rotations that increase the

diversity order can be used on the Gaussian channel without any loss in performance.
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3 Fast Rotation Transform for fading channels

3.1 From algebraic rotations to Fast Rotations

The non-trivial problem when searching for a multidimensional rotation is to guarantee
a diversity order greater than or equal to L. One solution has been proposed in [8] where
the n-dimensional real rotation R with diversity order L = n/2 is the generator matrix of
the rotated cubic lattice Z,, ;, = RZ". The rotated lattice is built by applying a canonical
embedding to the ring of integers in a totally complex cyclotomic number field. The
number field is generated by 8 = %™V (n = ¢(N) where ¢ is the Euler function). By
denoting 0; = 0 x e¥™i=1)/* for { = 1...n/2, the rotation matrix is given by the following

n/2 x n/2 complex form

1 1.1
0 0, ... 0,

R=| ’ /2 (3)
g2t g/t ajjjj—l

This n/2-dimensional complex rotation of diversity n/2 (full diversity) is equivalent to

a real n-dimensional rotation of diversity n/2. The n x n real form can be obtained by
. . . . a/ _b
replacing each complex entry a + jb of R with a 2 x 2 matrix
b a

If we restrict the values of n to powers of 2, we obtain N = 2n and we then evaluate the

coefficients r;;, of the rotation matrix R by

4yme Jmk 2jmik

= (0.5 = L Wi,k € 0% . (4)
Now, if this rotation is applied to a vector X = (zq,...,2,/2-1), the resulting vector is
P = (p07 B 7pn/2—1) giVen by
%_1 %_1 2jmik . ik
pi= > (riay) =Y (e a'y) with 'y = xy.€2077 (5)
k=0 k=0

If we compare the above formula with the Discrete Fourier Transform (DFT), we see that
an algebraic rotation based on the lattice Z,, ,,/; is equivalent to n/2 phase shifts followed

by a DFT. Thus, a complex Fast Rotation Transform (FRT) of full diversity is obtained
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by combining bidimensional rotations and a Fast Fourier Transform (FFT).

The Euclidean distance distribution of a lattice A has a direct impact on its performance
on the Gaussian channel (asymptotically it depends only on 7 and dgmn). In a similar
way, the diversity distribution of A has a direct impact on its performance over the
Rayleigh fading channel. Since 0 belongs to A, the diversity distribution can be obtained
by comparing all points to 0. For x € A chosen at random, the diversity distribution gives
the probability P([) that [ components of x are non zero, where L <1 < n. The diversity
distribution of an FRT (complex form) is simply given by P(l) = 0forl=0...n/2—1 and
P(n/2) = 1. The minimal diversity order of an FFT is L = 1,i.e. P(1) # 0. This is trivial
because (1,0,0,...,0) belongs to the FFT lattice. Rigorously, the FFT has no diversity
but its diversity distribution approaches the FRT distribution for very large dimensions
n (see Fig. 2 in the next section). Thus, for n large enough, the FFT and the FRT
have the same performance on the Rayleigh fading channel. The FFT performs badly
for n < 32 whereas an FRT decoded with the universal sphere decoder [12] eliminates
almost completely the fading effect. The behavior of FHT (Fast Hadamard Transform) is
similar to that of an FFT. In the next sub-section, the diversity distribution of a random
Hadamard-like matrix is computed and it is shown that for n large enough FRT, FFT,
FHT, and even any rotation chosen at random perform similarly on the Rayleigh fading

channel.

3.2 Diversity distribution of random Hadamard-like matrices

Let us consider a spectral efficiency of 1 bit per dimension (s = 2). In this case, the
Hadamard matrix (i.e. the generator matrix of A) is multiplied by an integer vector
u whose components take the values 0 or 1. The Hadamard matrices are classically

computed recursively [14] pp. 44-49

1 ) 2n /—/
2n H —H

An exact formula for the entries h;; of a Hadamard matrix is very difficult to express.

Hence, we define a random Hadamard-like matrix H,, that will enable us to compute the



diversity distribution:

e the first row and the first column of H,, are filled with ‘7".
e the other rows of H,, are composed by n/2 ‘1’ (including the one in the first column)
and n/2 1’ equally distributed.

1
e we voluntarily forget the scaling factor —

N

Let us define:
e u the input vector, and v the output vector (v € A), such that v = Hu

o Upo the set of vectors u with k components equal to ‘7”7 and uy = 0. Its size is

n—1
Vsl = (")
o Uy the set of vectors u with k components equal to ‘7”7 and uy = 1. Its size is
n—1
Vel = (7))

e For U being one of these two sets and for d € Z, we define
Py(d)=Plvi=d|ucU)=Plvj=d|ueclU) VY(,j)e{l,...,n—1} (6

Note that vy # 0 for any u # 0.
e [[l] is the number of vectors with diversity /.

With these notations, the number of vectors v with diversity [ while u € U is
Ll = |U[P(0)"'(1 = Py (0))". (7)
This gives us the general formula of the diversity distribution of these random matrices

Vie{l,..,n—1}

n/2 n—1 n—1
Hil= 2 (( 2k, )PUzkalo(())n_l(l = P O (2k1 - 1)PU2k1|1<0>n_l(1 - Uzkul(o))l_l)

k’i:l
and
=S ("o m, o (P Y he, e (L
n| = — —

=\ 2% Varg o 2k — 1 et 2k — 1

(8)



Similar expressions can be derived for a higher spectral efficiency. Fig. 3 shows the
diversity distribution, for complex 512-dimensional and 8-dimensional FRT, complex 8-
dimensional and 512-dimensional FFT and real 8-dimensional and 512-dimensional FHT.
As illustrated, Hadamard matrices (or a random 41 matrix) have the worst diversity
distribution. Thus, the rotation matrix must be properly chosen for low dimensions, e.g.
N = 8. However, when N is large enough, the three distributions sketched in Fig. 3 (b)
exhibit high diversity orders. Note that the diversity scale starts at 500. This explains
why all these rotations show practically the same error rate for dimensions larger than

256 on the Rayleigh fading channel.

The diversity distribution given by equations (8) is analytically tractable because the
matrix entries are limited to two values on the unity circle, i.e. £1. A straightforward
generalization is to choose the matrix entries from a points uniformly distributed on the
unity circle, @ > 2. A Gram-Schmidt procedure is applied to the random matrix to
guarantee its orthogonality. When a > 2, finding an explicit expression for the diver-
sity distribution is a very difficult task. Fig. 4 illustrates the performance of random,
Hadamard and algebraic rotations obtained by computer simulations. Four rotated lat-
tices have been randomly selected: the 8-dimensional Zs_4_,andom lattice is obtained with
a = 4 and its diversity is L = 4; the 16-dimensional Z16_s_random and Z16_14_random - lattices
correspond to @ = 4 and a = 16 with a diversity order L = 8 and L = 14 respectively; we
built the 32-dimensional rotation Zs33 ,4ndom With @ = 8 points on the unity circle but we
were not able to determine the true value of its diversity order. As seen in Fig. 4, random
orthogonal matrices perform as good as optimized algebraic rotations. Notice the poor

performance of Hadamard matrices, especially for low dimensions.

4 Minimum MSE decoding of lattices with DFE

Equalizers are commonly used in digital communication systems to reduce the intersym-
bol interference (ISI) when transmitting over bandwidth limited channels [15]. When
the channel impulse response is short, a maximum likelihood equalization is possible by

applying the Viterbi algorithm to the channel trellis. Otherwise, the ISI reduction is done



by sub-optimal but less complex equalizers based on the MSE criterion [15].

What is the relation between equalization and lattice decoding ?

A lattice A is a discrete set of points in the n-dimensional space IR" or €™ obtained by
a linear transform of the group Z", i.e. A = MZ" where M is the lattice generator
matrix. The effect of this matrix on Z" is similar to an ISI channel : a component of
a lattice point is a linear combination of all the input integers. Thus, suppressing the
ISI is equivalent to decoding A and hence the lattice decoding can be performed with
the help of an equalizer. Due to the dramatic complexity of trellis equalization (for high
dimension lattices), the only possible solution is to decode the lattice with a sub-optimal
MSE equalizer and decision feedback.

Fig. 5 shows the system model and the DFE with a forward matrix W and a backward

matrix (G. The additive white Gaussian noise b has a variance Ny per component. The

estimation of the i** component is not used in the feedback equalization of the i** received
symbol, and so we impose the following condition
\V/l € {0, L= 1} | gi; |: 0. (9)

We denote the transmitted vector by * = Mz and the received vector by r = 4+ b. The
vector Z is the input of the threshold detector and the estimated vector Z is fed back to G.

Let o2 denote the variance per component in the integer vector z. We assume that o? = 1
otherwise Ny must be replaced by Ng/o?. It is also assumed that E[Zé‘h] = pl,, where p

is a correlation factor and I, is the identity matrix. Note that 2z’ is the transpose of z,

z* is the conjugate and 2" is the transpose conjugate. Practically, p is approximated by

p ~ (1 — P.(z)). Hence, p = 1 when the error rate on the integer components z; is too
small.

The DFE based on the MSE criterion minimizes the mean-square-error defined by E[ ||z — 2|2 ].
Since the condition (9) must be taken into account, Lagrange multipliers are used and

the equalizer minimizes the following quantity

n—1
E(z-217) -3 digi (10)
=0



The minimization over W and G gives

W* = NLODp/\-}—(l—pQ)MtV* where V is defined by (%M*Mt + 1)V =1,

G* = £ Dpriaoy MV M" + Dy,

where any Dg (resp. Dg,,) represents the diagonal matrix Diag(&y ... &,—1), and where the

vector (Ag...A,—1) is denoted A.

The Lagrange multipliers A; are given by the constraint on (G. The final expressions of

W and GG become

W=D_.1 MVandG=D_o M'VM—D_,p

p2 B*+ Ny P2 B*+ Ny P2 B*+ N
(11)
with V* = (vi;), M = (Mj;), B = (Bo, -+, Bu-1) and By = 32120 Y155 mgvwm;
In the next section, the sub-optimal lattice decoder described above will be applied to
two different scenarios: a dense lattice matched to the Gaussian channel and a multidi-

mensional rotation adapted to the Rayleigh fading channel.

5 Simulation results

The fundamental gain and the kissing number of the Barnes-Wall lattice BWys6 are
v(BWase) = 10.5dB and 7(BWas6) = 325139443200 respectively. A finite constellation
extracted from this lattice is a good signal alphabet for the Gaussian channel. The effec-
tive gain is smaller than 10.5dB due to the high kissing number. Equation (1) gives the

error probability per point P ., for an ML decoder. If the constellation binary labeling

otnt

P

is random then P, = 5P, ..., and if it is a Gray code labeling then P,

_ 1
2bit T 1285 Epoint*

P.1,, and P.,,, are drawn in Fig. 6 (a) for s = 4.5 bits per symbol (or equivalently
2.25 bits per dimension). By comparing with the 16-QAM performance we see that the
practical gain of an ML decoder is 5.5dB. Fig. 6 (a) shows also the performance of the
sub-optimal MSE decoder when applied to a cubic constellation extracted from BWose.
The MSE criterion seems far from reaching the ML criterion performance on the Gaus-

sian channel. Indeed, the MSE decoder completely eliminates the intersymbol interference
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generated by the lattice structure without taking advantage of the sphere packing density.

The performance of the MSE decoder with the 256-dimensional FRT, i.e. the multidi-
mensional algebraic rotation given by the lattice Zs;; 256 on the Rayleigh fading channel
is shown in Fig. 6 (b). The same figure compares the FRT on the Rayleigh fading channel
with the QAM on the Gaussian channel. Clearly, the Rayleigh fading channel is converted
into a Gaussian channel, the fading effect is extremely reduced. The diversity distribution
is good enough in large dimensions (the same argument is also valid for FFT and FHT)

and compensates for the sub-optimality of the MSE criterion.

6 Conclusions

The minimum mean-square-error criterion is a way to encounter the intractability of lat-
tice decoding in large dimensions (n > 128). The MSE decoder seems to perform poorly
on the Gaussian channel. The lattice fundamental gain due to the packing density is
not exploited by the MSE criterion where the optimization is done in the integer space
instead of the lattice space. The MSE decoder is only capable of suppressing the lattice
inherent intersymbol interference on the Gaussian channel. However, the MSE decoder
performance is excellent on the Rayleigh fading channel. The high diversity orders in the
lattice constellation are not completely destroyed by the sub-optimality of the decoder.

When the dimension is large enough, it has been proved analytically that the +1 ran-
dom Hadamard-like matrices exhibit an excellent diversity distribution. Computer-based
simulations showed that random rotations, obtained by selecting more than two points
on the unity circle, perform in the presence of fading as good as an optimized algebraic

rotation Z, /.
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Separate caption page for figures and images

Fig. 1 System model.

Fig. 2 Increasing the diversity order by rotating the constellation.

Fig. 3 Diversity distribution for s=2 and dimension N (a) : N=8, (b) : N=512.

Fig. 4 Performance of Hadamard, algebraic and random rotations on the Rayleigh fading
channel, 2 bits per dimension, ML decoding with CSI.

Fig. 5 Decision feedback decoding of a lattice.

Fig. 6 Binary error rate for the BWsg lattice, s=4.5 bits per symbol (a) and Fast Rotation

Transform, dimension n=256 and s=4 bits per symbol (b).
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Figure 5: Decision feedback decoding of a lattice.
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