
Concepts for Exchanging Extra Information Between Protocol
Layers Transparently for the Standard Protocol Stack

Sandrine Ḿerigeault∗ - Catherine Lamy∗∗
Philips Recherche France (PRF)

51 rue Carnot, B.P. 301
92156 Suresnes Cedex, France

{sandrine.merigeault, catherine.lamy}@philips.com

Abstract—Popular applications such as conferencing or audio/video
streaming over wireless networks require the transmission of data with
real-time and bandwidth constraints. Due to these strong constraints,
optimizing the end-to-end transmission is almost a necessity. However,
applications do not deal directly with the physical level but through
protocol networks, and the available transmission methods depend
only on these protocols, without any respect to the considered appli-
cation. In order to allow optimisation of application level source cod-
ing and FEC at the network access layer in a standard protocol stack,
two adaptation layers are inserted, namely source adaptation layer and
channel adaptation layer, that are used to sort of bypass the internet
and transport layers.

Index Terms—Network transparency, information exchange, adap-
tation layers, real-time transmission, joint source channel (de)coding.

I. I NTRODUCTION

A protocol stack in a network is organized as a set of lay-
ers, each one built upon its predecessor as defined by the
OSI (Open System Interconnection) reference model. The
function of each layer differs from network to network, but
in every network, the purpose of each layer is to offer given
services to its neighbour layers. As a consequence, protocol
layers that are not juxtaposed cannot exchange information.
Such a restriction may reveal itself limitative.

For instance, high data compression and robust trans-
mission often meet conflicting requirements, in particu-
lar when a bandwidth limited wireless link is considered.
Indeed, transmission systems operating over bandwidth-
limited channels require source encoding to compress the
bitstream by reducing the source symbols inherent redun-
dancy. Unfortunately, compression techniques that pro-
vide highly compressed sources allowing for bandwidth-
efficient transmissions also generate bitstreams very sensi-
tive to channel perturbations. Channel coding, in the form
of Forward Error Correction (FEC), is thus generally applied
to provide an appropriate level of protection, at the price of
bandwidth expansion. This explains why a trade-off must
generally be found between the amount of bandwidth allo-
cated to the information data, and the amount that is allo-
cated to the error protection techniques. In practice however,
such trade-offs are only roughly determined, as applications
do not directly deal with the network access layer, which
is the combination of the physical and data link layers in
the TCP/IP protocol model, but through network protocols.
Indeed, actual source and channel en/decoders are often net-

* S. Mérigeault is now with Philips Digital System Labs - Paris, 51 rue
Carnot, B.P. 301 92156 Suresnes Cedex, France.

** C. Lamy is now with THALES Communications France, 66 rue du
Fosśe Blanc, B.P. 156 92231 Gennevilliers cedex, France (e-mail: cather-
ine.lamy@fr.thalesgroup.com).

worked devices that cannot directly exchange information
due to the standardized protocol layers that separate them.

Hence, the available protection methods depend mainly
on the considered protocol, without any respect to the con-
sidered application. For transmissions using Internet proto-
cols, many solutions have been proposed and are currently
deployed or under study. Typical protocols are based on
the IETF protocol TCP, UDP, and the real-time transmission
dedicated Real-time Transfer Protocol (RTP). A better trade-
off can however be obtained by using Joint Source Channel
Coding (JSCC) techniques [1], where both encoders and de-
coders aim at working together for improving their perfor-
mance. In fact, such an approach not only allows to adapt
the transmission to the considered application, but also per-
mits to finely attune the transmission parameters (encoding
rates, chosen FEC) to the current transmission conditions.

As stated above, such an efficient communication be-
tween two separate protocol layers is unfortunately not pos-
sible if one wants to avoid any redefinition of the existing
protocols, first to keep the system backward compatibility
and second to allow the implementation of this improve-
ment on as many existing systems as possible. As a con-
sequence, two solutions appear possible: either bypassing
the network protocol stacks, or ”fooling” it with transmit-
ting syntaxically correct packets that contain the considered
extra information. The first case corresponds to the trans-
mission of the supplementary information via a link parallel
to the protocol stack. As a matter of fact, such a transfer
cannot be interpreted by the various protocol layers, hence
it can only be done locally, for instance by means of a dedi-
cated driver [2].

The aim of the work presented in this paper corresponds
to the second case. A concept for allowing the joint optimi-
sation of application and network access layers transparently
for the standard protocol stack is proposed, in the context of
real-time data transmission over a mobile network.

This article is organized as follows. Section II presents
the transmission scheme and describes the information ex-
changes than can take place between the network access and
application layers. Section III presents the concept to real-
ize said information exchanges, introducing two adaptation
layers to this effect. The feasibility of the concept has been
studied in the context of a RTP/UDP/IP protocol stack. Fi-
nally, Section IV draws out the conclusions.

II. T RANSMISSIONSCHEME

Among the possible useful information exchanges be-
tween the source and channel coders,i.e., between the appli-

0-7803-7661-7/03/$17.00c©2003 IEEE.

cation and network access layers, we first find at the trans-
mitter side theSource Significance Information(SSI). This
information on the considered source, for instance the sensi-
tiveness of the source symbols to channel errors, will allow
to use efficientUnequal Error Protection(UEP) [3][4]. At
the receiver side, theChannel State Information(CSI) can
also be useful to adapt the source and channel coding rates
to channel conditions [5]. A possible use of such CSI at
the application level is to implement specific retransmission
strategies depending on the quality of the channel link (re-
quest retransmission, apply concealment,. . .). And finally,
in order to attune the source and channel decoding at the re-
ceiver side, it is interesting to provide information about the
pertinence of the channel decoding to the source decoder.
This channel decoder soft output, orDecoder Reliability In-
formation(DRI), will allow to perform soft-output VLC de-
coding [6], [7].

The bandwidth needed to transmit extra information
varies with the type of this information: whereas it may con-
sists of only a few bits for the SSI and the CSI, the DRI
will easily multiply the necessary bandwidth by four or five.
Moreover, it is well known that wired transmissions do suf-
fer much less from bandwidth limitations than wireless ones,
and are definitely less prone to errors. As a consequence, the
aforementioned information exchanges are especially inter-
esting in the wireless case, and we will consider such a case
in this paper.

Fig. 1 and Fig. 2 illustrate the possible extra information
exchanges between the application and the network access
layers during a transmission between a mobile and a server
in the context of real-time data transmission over a mobile
network, for both data upload or data download.

Fig. 1 Transmission scheme for data upload.

Fig. 2 Transmission scheme for data download.

Let us consider more closely the data download case as
an example. The SSI is transmitted from the source encoder
within the mobile to its channel encoder. As both decoders
are in the same equipment, the link is local and a bypass can
be created via a driver. On the other hand, the CSI and the
DRI obtained after the wireless link at the channel decoder
level can be used in the source decoder. However, those two
decoders are separated by the Internet and several protocol
layers, which implies the need to implement an adequate
routing process to dispatch the extra information towards its
goal. It will consequently be sometimes possible to transmit

locally the extra information, whereas at other times this in-
formation will need to be transmitted through an entire net-
work, as illustrated in Fig. 3 in the case of data download.
Refer to Appendix for the detailed traditional protocols used
in a real-time data transmission stack.

Transport

Access
Network

Internet

Access
Network

Internet Internet

Network
Access

Application

Access
Network

Internet

Transport

Application

CSI, DRI
SSI

Wireless LinkWired Link (Internet)

Fig. 3 Network scheme for data download.

III. A DAPTATION LAYERS CONCEPT

The goal of this paper is to propose a solution that allows
the exchangesbetween the application and the network ac-
cess layersthrough the protocol stackin a transparent way,
i.e. without interfering with the regular use of the network,
in order to keep the Quality of Service (QoS) of the orig-
inal packet. As a consequence, we propose to introduce
both at the receiver and transmitter sides adaptation layers.
These layers will permit to successfully transmit informa-
tion through the standard network protocol stack by “fool-
ing” it. As shown in Fig. 4, these adaptation layers con-
sist on the first hand of aSource Adaptation Layer (SAL),
which will be the interface between the application layer and
the rest of the protocol stack and on the other hand of a
Channel Adaptation Layer (CAL), which will be the in-
terface between the network access layer and the rest of the
protocol stack.

Transport

Access
Network

Internet

SAL

Application

Access
Network

Internet

Wireless Link
Wired Link (Internet)

Access
Network

CAL

Internet

Transport

SAL

Application

Access
Network

CAL

Internet

Fig. 4 System for the Network Transparency concept.

The adaptation layers are meant to work together, with the
first one generating the extra packet(s) containing the sup-
plementary information, which are later interpreted and re-
organized by the second one. This naturally leads to the ne-
cessity of defining a marking means at the generating layer
for the supplementary information to be reconnected to the
original packet at the interpreting layer. Generating extra
packets that are correct from a protocol stack point of view
presents the main advantage to allow the transmission of the
said packets over an entire network system.

Let us now consider how the extra packets can be used
while keeping the Quality of Service offered by the protocol
stack. In real-time data transmissions, the QoS is provided
among others by the Real-time Transport Control Proto-
col (RTCP) which periodically sends feedback control mes-
sages to the transmitter side about the received data. Conse-
quently, any supplementary information sent by the CAL to

the SAL through the protocol stack will lead to correspond-
ing additional RTCP messages automatically generated at
the transport layer and sent back to the transmitter. Such
additional messages would disturb the emitting host, as it
would not understand messages corresponding to supple-
mentary information it never sent. To avoid this, a first so-
lution would consist in deleting all the feedback messages,
leading to a complete loss of the QoS. A second solution
consists in transmitting the extra packets via a distinct port
number in the transport protocol header. In this case, the
original port number will correspond to the transport of the
original packet, where the protocol stack QoS mechanisms
will be active, i.e. where the RTCP feedback control mes-
sages will be sent back to the transmitter side. A second port
number will be used to transport the supplementary infor-
mation. Known by the CAL which will update accordingly
the transport protocol header field of the extra packets (see
Section III-A), this RTP port number will correspond to an
RTCP one (the next higher (odd) port number [8]) where any
RTCP packet is deleted at the network access layer. This
way, the CAL can provide extra information to the SAL
while the standard QoS mechanisms are kept active.

A. Transmission From the CAL to the SAL

Let consider the transmission of extra information from
the CAL, placed at the transmitting or receiving side, to the
SAL at receiving side. As illustrated by Fig. 5, this consists
of four main steps, namely: the standard transmission of the
original packet, the generation of the extra packet containing
the supplementary information and an adequate marker, the
transmission of the extra packet and finally the exploitation
of the supplementary information.

CHANNEL ADAPTATION LAYER

Frame entering Internet layer (F0)

(Si)
Headers P.

Transport Transport

Internet
Feedback messages Feedback messages

Position Si SOURCE ADAPTATION LAYER

Application

Supplementary information (B0)

Info.

Feedback
messages

Delete

Info. 1Headers’

Headers’ Info. n

n

...

n

Generate valid packets: add headers
Change port number
Define sequence numbers
Put checksum = 0
Supplementary information size

B1..Bn

Network
Access

P.
C0 Position (Si,n)

Info. 1 Info. n
C1

Fig. 5 Transmission of extra information from the CAL to the SAL.

During the first step, corresponding to thestandard trans-
mission, the CAL extracts from the data provided by the ra-
dio link (e.g. channel decoder) the original packet consti-
tuted of headers and payload as classically done and place
it into a bufferF0. Note that this original packet may have
been corrupted by the transmission, hence the data it con-
tains may be erroneous. If the packet headers are correct, the

packet is transmitted through the whole protocol stack and
is received at the application layer by the SAL. Otherwise
the packet is discarded and, depending on the considered
network protocols, a retransmission may occur later. This
may be a problem for some applications, such as soft-input
source decoding. In this case, it can be proposed to mod-
ify the headers of the original packet by setting the UDP
checksum to zero, to ensure that even if their payload is cor-
rupted, packets may still reach the SAL. The QoS of the
protocol stack is preserved by keeping the feedback control
messages. The payload is stored in the SAL bufferC0 at
the position given by the sequence number in the transport
protocol header.

In the second step, denotedextra packet generation, the
CAL extracts from the network access layer the supplemen-
tary information necessary for the application layer. De-
pending of the supplementary information size, one or sev-
eral extra packets are created at the CAL level in the buffers
B1..Bn. Each of these packets contains the supplementary
information B0 wholly or partly and the number of extra
packets if there are more than one. Valid headers are then
generated, taking into account fields such as the setting of
the specific transmission port number and elements such as
the size of the extra information. The sequence number
of the extra packet is derived from the one of the original
packet, to allow the SAL to be able to link them at the ap-
plication level. In the case where several extra packets are
created, the sequence number will be a combination of the
original packet sequence number with the number of extra
packets. Note that it is necessary to reset or re-compute the
checksum fields in order to force the transmission of this
supplementary information. Note that if the original packet
is fragmented, it can be judicious to create extra packet(s)
only for the first fragment or for each fragment by taking
into account the fragment number or by using in the head-
ers of the extra packets the same fragmentation fields as in
the original packet. Finally, the CAL is set to delete all the
feedback messages corresponding to the transmission of the
supplementary information.

In the third step, namedextra packet transmission, the
extra packets stored in the buffersB1..Bnare transmitted
through the protocol stack and stored in the SAL bufferC1
at a position given by their sequence number.

Finally, in the fourth and last step, calledsupplementary
information exploitation, the SAL, having received the ini-
tial payload and the supplementary information, processes
the extra information with its corresponding payload.

B. Transmission From the SAL to the CAL

Mirroring the transmission presented in Section III-A, we
describe here the transmission of supplementary informa-
tion from the SAL, either at the transmitting or receiving
side to the CAL at receiving side. As illustrated by Fig. 6,
this process consists also of four main steps.

In the first step, corresponding to thestandard transmis-
sion, the SAL extracts from the application layer the payload
and sends it through the protocol stack.

In the second step, denotedextra packet generation, the
SAL receives from the application layer the extra informa-

Supplementary information

SOURCE ADAPTATION LAYER

Info.

Application

Send Information

Synchronize sequence numbers
Specific port number

...Info. 1 Info. nnn

B1..Bn

Payload

P.

Info.

Headers P.

F0

CHANNEL ADAPTATION LAYER

TransportTransport

Internet

...Info. 1 Info. nHeaders’ Headers’n n

D1..Dn

Read supplemenatry information
Read port number
Read sequence numbers
Take away the headers

Access
Network

Fig. 6 Transmission of extra information from the SAL to the CAL.

tion necessary at the network access layer and creates ac-
cordingly one or several extra packets in the buffersB1..Bn,
depending on the supplementary information size. Beside
the extra information, these packets contain the number of
extra packets (if there are more than one) and a marker, for
instance the sequence number, that will allow the synchro-
nization of initial payload and extra information at the CAL
level. If several packets were created, the marker will take
into account both the original packet sequence number and
the number of extra packets. Note also that if the original
packet is fragmented during the transmission, all the frag-
ments and the supplementary information are still linked via
the marker, but may require the re-assembly of the original
packet to allow the use of the supplementary information
over all the packet.

In the third step, calledextra packet transmission, the
extra packets stored in the buffersB1..Bnare transmitted
through a protocol stack with a specific port number. The
extra packets are stored in the CAL buffersD1..Dn.

In the fourth and last step, namedsupplementary infor-
mation exploitation, the CAL receives into a bufferF0 the
original packet constituted by headers and payload, as clas-
sically done. Having received the extra packet(s), the CAL
reads their headers in order to know if they are linked with
the original packet. If it is the case, the headers of the ex-
tra packet(s) are deleted in order to transmit to the network
access level only the supplementary information.

C. Discussion on the concept feasibility

To show the feasibility of the network transparency con-
cept, one requires an access to real transmitted data both
below the IP layer and above the RTP layer. It was conse-
quently chosen to build a simulator in the BSD (Berkeley
Software Distribution) Linux environment and to directly
use the UDP/IP protocols of the Linux computer.

Having in principle only access to the user-level of the
computer, but needing to access below the IP layer to im-

plement theChannel Adaptation Layerfunctionalities, we
have created links between the Linux kernel and the user-
level. To achieve this, the new protocol family introduced
in the Linux kernel (post-2.2 releases) was used in combi-
nation withLPF filters based on Berkeley Packet Filter [9].
NamedPF PACKET[10], this new protocol allows an appli-
cation to send and to access packets directly at the network
card driver level, thus avoiding the usual protocol stack and
allowing to modify the various protocol fields by directly
interacting with the Ethernet interface.

The resulting feasibility scheme is presented in Fig. 7.
Covering only the transmission from the CAL to the SAL
at the receiver side, it consists of one sender, two receivers
and oneChannel Emulator Block. The sender sends a data
sequence by the means of datagram socket (SOCKDGRAM),
which relies on the UDP protocol services. This packet goes
down the protocol stack to the Ethernet layer. TheChannel
Emulator Blockhas opened aPF PACKETfamily socket to
listen to traffic at the Ethernet level. ALPF filter is attached
to this socket and will transmit the previous packet encap-
sulated with the headers of the RTP/UDP/IP/Ethernet stack
to the user-level. Noise is added to this packet by a chan-
nel simulator. Supplementary information can be extracted
from the Ethernet level. The noisy packet and the supple-
mentary information are transmitted to theChannel Adap-
tation Layer. At the output of this layer, the original packet
and the extra packet are sent by a raw socket (SOCKRAW)
with theIP HDRINCLsocket option directly to the IP level.
The payloads are then received respectively by the different
receivers (one for each UDP port number).

IP

UDP UDP

Data sequence

SOCK_RAW (IP_HDRINCL)
SENDER

SOCK_DGRAM
Headers Data sequence

Headers’ info +
Data sequence info +

SOCK_DGRAM SOCK_DGRAM

RECEIVER 2RECEIVER 1

Source Adaptation Layer

CHANNEL EMULATOR
BLOCK

PF_PACKET socket launched
LPF filter in action

Headers Data sequence

info +

Channel Adaptation Layer
Channel Simulation

User−level

Kernel

IP

UDP

ETHERNET
Listen

Filter

RTP RTP RTP

Fig. 7 Feasibility scheme of the network transparency concept.

IV. CONCLUSION

This article presents a concept for exchanging informa-
tion between the application and network access layers in a
transparent way through a network protocol stack for a real-
time data wireless transmission. The solution consists in
adding two adaptation layers to the network protocol stack:
aChannel Adaptation Layerand aSource Adaptation Layer
that generate and interpret extra packet(s) transporting the
supplementary information.

An original technique has been developed that consists in
generating valid packets containing the supplementary in-
formation in order to be compliant with the protocol stack
and so to cross it. In order not to disturb the transmission of
the original packet (i.e. to keep the QoS), a specific port

number is defined in the transport protocol header. This
technique allows to transmit the supplementary information
across an entire network (i.e. not only across one protocol
stack) and can be used in combination with local bypass via
means of drivers.

The feasibility of this concept has been studied at the re-
ceiver side by a simulation in a BSD Linux environment by
implementing theChannel Adaptation Layer.

APPENDIX

In the case of real-time data transmission, consider-
ing Internet Protocol (IP) as network layer protocol, the
most prevalent protocol is the Real-time Transport Proto-
col (RTP) [8], which is usually used in combination with the
User Datagram Protocol (UDP). In such a case, the Qual-
ity of Service (QoS) is provided among others by the Real-
time Transport Control Protocol (RTCP) [8]. RTCP peri-
odically sends feedback control messages to the transmitter
side about the received data. The explicit standardized head-
ers for these three protocols [11] are detailed in Fig. 8.

UDP:

RTP:

Identification

Source Port Destination Port

Length

IPv4:

PT Sequence Number

Vers. TOS Total Length

Offset

ChecksumProtocolTTL

Source Address

Destination Address

Checksum

Synchronization source (SSRC)

Contributing source (CSRC)

Time Stamp

PV CC MX

H. Len

Flags

Fig. 8 Headers for the RTP/UDP/IPv4 stack.

REFERENCES

[1] L. Camiciotti, C. Lamy, L. Meilhac, S. Olivieri, and P. Verdi. “Joint
source-channel coding for 4G mutimedia streaming”. In2nd WWRF
meeting, WG3, Helsinki, Finland, May 2001.http://www.wireless-
world-research.org/WWRF2/wwrf2.html.

[2] A. Rubini. LINUX Device Drivers. O’Reilly and Associates, 1998.
[3] K. Fazel and J.J. Lhuillier. “Application of unequal error protec-

tion codes on combined source-channel coding of images”. InProc.
ICC’90, volume 3, pages 898–903, Atlanta, USA, April 1990.

[4] M. Gallant and F. Kossentini. “Rate-distortion optimized layered cod-
ing with unequal error protection for robust Internet video”.IEEE
Trans. Circuits and Systems for Video Technology, 11(3):357–372,
March 2001.

[5] I. Kozintsev and K. Ramchandran. “Robust image transmission
over energy-constrainted time-varying channels using multiresolu-
tion joint source-channel coding”.IEEE Trans. Signal Processing,
46(4):1012–1026, April 1998.

[6] M. Bystrom, S. Kaiser, and A. Kopansky. “Soft source decoding with
applications”. IEEE Trans. Circuits and Systems for Video Technol-
ogy, 11(10):1108–1120, Oct. 2001.

[7] L. Perros-Meilhac and C. Lamy. “Huffman tree based metric deriva-
tion for a low-complexity sequential soft VLC decoding”. InProc.
ICC’02, volume 2, pages 783–787, New York, USA, Apr.-May 2002.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
“RFC1889: RTP: A Transport Protocol for Real-Time Applications”.
http://www.ietf.org/rfc/rfc1889.txt, Jan. 1996.

[9] S. McCanne and V. Jacobson. “The BSD Packet Filter: A new Archi-
tecture for User level Packet Capture”. InProc. Winter’93 USENIX,
pages 259–269, San Diego, USA, Jan. 1993.

[10] G. Insolvibile. “Kernel Korner: The Linux Socket Filter: Sniffing
Bytes over the Network”.Linux Journal, 86, June 2001.

[11] W. Richard Stevens.TCP/IP Illustrated Volume 1: The Protocols.
Reading: Addison-Wesley Corporate & Professional, 1999.

	Title
	Introduction
	Transmission Scheme
	Adaptation Layers Concept
	Transmission From the CAL to the SAL
	Transmission From the SAL to the CAL
	Discussion on the concept feasibility

	Conclusion
	References

