
Source
encoder Channel

Channel
encoder

Channel
decoder

Source
decoder

DRI

SAICSI

SSI

Fig. 1. Generic joint source channel coding scheme.

Multiplex header compression
for transparent cross-layer design

Catherine Lamy-Bergot, Member, IEEE, and Pierre Vila

THALES Communications France*

TRS/TSI
160 boulevard de Valmy F-92704 Colombes Cedex

catherine.lamy@fr.thalesgroup.com
phone: +33 1 46 13 27 90

fax: +33 1 46 13 25 55

Abstract — The transmission of video or images over
bandwidth-limited channels faces the conflicting requirements
of being affected by error-prone channels while having at
disposal only limited bandwidth resources. Due to these
strong constraints, bit-rate reduction strategies such as source
coding or header compression have been developed and new
solutions relying on an end-to-end optimisation are beginning
to appear. A major difficulty comes from the fact that
applications do not deal directly with the access level but
through protocol networks, which leads to the necessity of
transparent cross-layer design. A multiplex mechanism is
proposed that takes advantage of the presence of an header
compression mechanism such as ROHC (RObust Header
Compression) to allow optimisation of application level
source coding and FEC at the network access layer in a
standard protocol stack, independently of the internet and
transport layers.1

Index Terms — cross-layer design, wireless channel, header
compression, joint source channel (de)coding.

I. INTRODUCTION
HE transmission of text, images and video over bandwidth-
limited channels can be dramatically affected by the errors

caused by the channel. To combat these errors, applications
classically use on one hand source encoding to reduce the
redundancy inherent in the source symbols, e.g. compression
standards relying on variable length codes (VLC: Huffman
codes, arithmetic codes,...), and on the other hand channel
encoding and modulation, i.e. forward error correction (FEC)
to increase the robustness of the transmission over the channel.
A more integrated optimisation can be achieved by developing
a joint source channel en/decoding strategy, which will allow
to use appropriately the residual source redundancy at the
decoding part to provide error correction capability [1].

In simple systems where the source and channel encoders
(resp. decoders) are directly interfaced, the different joint
source channel coding/decoding techniques can be easily
implemented by exchanging information between the different

* This work was supported in part by the French government through
project RNRT-VIP (convention 02-2-93-0241).

blocks, as shown in Fig. 1.
At the transmitter side, Source Significance Information

(SSI), giving information about the sensitiveness of the source
to channel errors, may be passed from the source encoder to
the channel encoder to enable techniques like Unequal Error
Protection (UEP). In order to adapt source and channel coding
rates to channel conditions, it is also useful to provide
information about the Channel State Information (CSI) back to
both the source and channel encoder. In the digital
communication world, the traditional decoding methods
applied to such concatenated schemes achieving high coding
gains with reasonable complexity and robustness to
transmission errors can be either hard-decision or soft-
decision, depending on whether the input signal is binary or
analog. As soft-decision decoding methods achieve an
asymptotic error performance improvement of several decibels
on most channels [2]-Ch.8, providing soft information appears
almost necessary in modern communications techniques. The
inner decoder must then provide soft output to the outer
decoder and vice-versa in the case of an iterative decoding. As
a consequence, the channel soft outputs and CSI, related to
both the fading amplitude and the noise, may be provided at
the receiver side by the channel to the channel decoder to
perform soft-input soft-output channel decoding. The obtained
channel decoder soft output, or Decoder Reliability
Information (DRI) will then be given to the source decoder
which will perform soft-input source decoding and eventually
send its soft output, or Source A posteriori Information (SAI)
back to the channel decoder.

However, actual source and channel en/decoders are often
networked devices that can not exchange information due to
the protocol layers that separate them, as shown in Fig. 2.

The various information to be exchanged between the
decoders must consequently be passed through different levels
of network protocols. Then, to remain compliant with existing

T

Source
encoder ChannelChannel

encoder
Channel
decoder

Source
decoder

CSI DRI

SAICSI

SSI

netw
ork layer i

netw
ork layer k

netw
ork layer k

netw
ork layer i

Fig. 2. Generic joint source channel coding scheme.

 Hdk …… Hdi Payload Tr

Fig. 3. Syntax principle for a networked sequence transmitted over the
physical channel.

networks recommendations and implementations [3][4], such
transmissions should not interfere with the regular use of the
network. This implies that the extra information should be
transmitted transparently for the protocol stack, which will
allow for the system to be backward compatible.

To exchange information between layers without modifying
the protocol stack, a first idea would be to bypass said stack
and use a parallel link, in particular when working on the same
machine. As a matter of fact, some links do exist in practice on
a computer between the kernel (lower layers) and the user-
level (higher layers), which allow a few specific exchanges
between the kernel and the user-level without going through
the protocol stack. Dedicated drivers with iotcl links [5] allow
the application layer to capture and filter data at data link
level. Such a solution is however only applicable locally, and
corresponds to a case where the data does in fact not go
through the protocol stack.

Another solution was proposed to allow for the exchange of
information such as the reliability (or soft information) through
a network between the channel and source decoders, with
avoiding any interference with the standard network use, and
consequently any redefinition of the existing protocols.
Presented in [6], this network transparency technique relies on
the presence of two adaptation layers, which allow to take into
account the existing QoS mechanisms, and on the validation of
the concept in a Berkeley Software Distribution Linux
environment. This solution has the advantage to be adaptable
to any protocol stack and any network, but imposes first to
have perfect knowledge of the protocol stack both at the
network access and application level, and second remains
rather complex to implement.

Following the path opened by this previous solution, the
present article proposes to take advantage of the presence of
an header compression mechanism in standardised wireless
communication such as UMTS and use this mechanism to
build or modify the content of valid IP packets at the network
access level. A solution is described that allows the exchange
of information (CSI, SSI, DRI, SAI, …) between the source
and channel decoders in presence of intermediate network
layers without any modification of said layers. This
information exchange will permit to improve the decoding
performance in the context of real-time data transmission with
header compression over a mobile network, for instance thanks
to the transmission of bits reliability. This solution presents the
double advantage to be backward compatible with existing IP
based networks that implement header compression, hence
allowing to use QoS management tools proposed by the IETF
and to embed the transmission of extra information within the

header compression construction and reconstruction
mechanism for a reduced increase of numerical complexity.

This article is organised as follows. Section II presents the
networked transmission scheme, describing the implications of
the OSI layer model and the header compression mechanism.
Section III introduces the proposed technique to realise the
needed information exchanges via the generation of extra valid
packets at the header compression level. Practical example of
the generated header fields and modification for original
packets in the RTP/UDP/IPv4 context are proposed. Finally,
Section IV draws out the conclusions.

II. NETWORKED TRANSMISSION SCHEME WITH HEADER
COMPRESSION

For image and video transmissions using Internet protocols,
many solutions have been proposed and are currently deployed
or under study. Typical solutions are based on protocols TCP
or UDP, with the real-time transmission dedicated Real-time
Transfer Protocol (RTP). The stack considered in the
following to illustrate the proposed technique will
consequently be an RTP/UDP/IPv4 one.

A. Influence of the OSI layer model: revisiting the basics
In practice, the transfer of extra information between the

channel and source decoders will consist in the transmission of
their quantified values through the network protocol stack. The
problem becomes then to transmit several binary inputs
(typically 4 or 5) instead of one for each information bit
considered. However, as they are not transmitted directly but
through a network, the information bits that interest the
application constitutes only a part, or payload of the
effectively emitted sequence. As illustrated in Fig. 3, this

sequence is composed by the payload encapsulated by headers
and eventual trailers (e.g. check fields).

More explicitly, the transmission of the data downward
through the protocol stack will consist at each layer border in
the following steps [3]:

• getting the data sequence SL+1 from upper layer,
• generating the ad hoc header and eventual trailer,
• creating the new data sequence SL by concatenating the

header, the sequence SL+1 and the trailer. This step
eventually leads to cutting the data sequence SL+1 into
several blocks due to size limitations imposed by the
protocols. In that latter case, the resulting packets keep
a similar constitution to the not-divided ones, and can
hence be treated similarly in the proposed scheme.

On the other side of the channel, the upward transmission
through the protocol stack will consist at each layer border in:

• getting the data sequence S'L-1 from lower layer,
• decapsulating the ad hoc header (and eventual trailer)

Fig. 4. Various header fields for a RTP/UDP/IPv4 stack and their
classification.

to create the sequence S'L. This step is eventually
performed together with retransmission requests when
the decapsulation indicates that the data flow was
corrupted,

• forward the data sequence S'L to upper layer if the
check field is correct.

B. Header Compression: goals and implementation
The wireless link is characterised by a limited bandwidth,

which in practice limits the information bit-rate to be
received/transmitted by the user. As a matter of fact, the
wireless link is traditionally seen as a bottleneck for the
transmission, especially as the high bit and frame error rates
(BER and FER between 10-2 and 10-5) often lead to multiple
retransmissions which worsens the bandwidth scarcity
problem. As a consequence, the direct transmission of IP
packets over the wireless physical links leads to a dramatic
waste of the information bit-rate. As a matter of fact, the
headers of RTP, UDP and IP layers add a non-negligible load
to the information payload, load that can easily be reduced as
these headers are often redundant either within the header
itself or with the previous and following ones.

To answer this double goal of header reduction and header
robustness increase for wireless links, a new protocol was
proposed by the IETF, that has been introduced in the UMTS
releases 5 and 6 by the 3GPP working group. This scheme,
named RObust Header Compression (ROHC) has been
standardised by the IETF under RFC 3095 [7]. Its principle is
to compress the transport and network headers by transmitting
only the non-redundant information. Standardisation studied
for RTP/UDP/IP header compression in UMTS link are
currently being carried out by the IETF [8][9].

To better illustrate this ROHC mechanism, let consider the
case depicted in Fig. 4. The various header fields in the IPv4,
UDP, RTP protocol stacks can be classified as follows:

• INFERRED: data that can be directly derived from the
other headers fields. They are not transmitted.

• STATIC: fields static through the whole data
transmission. They are sent only once.

• STATIC-DEF: fields defining the data flow. They are
managed like STATIC ones.

• STATIC-KNOWN: fields with known values. They are
not transmitted.

• CHANGING: fields whose values change regularly,
whether randomly or periodically. They are fully
transmitted.

III. TRANSMITTING INFORMATION VIA EXTRA VALID
PACKETS

The idea presented in this paper is that the extra information
to be transmitted from the network access level to the
application level should be packetised by the header
compression reconstruction module at the same time as the
original transmitted data. This integration within the
reconstruction process allows for the hypothesis that the syntax
to be used to build extra packets is known, and that the syntax
of the reconstructed original data packets can be modified with
respect to the user will. Similarly, the extra information to be
transmitted from the application level to the network access
level is transmitted via extra packets that are intercepted by the
header compression module and extracted to be used with
respect to the user needs. Those extra packets are then
multiplexed with the original data flow for transmission
through the standard protocol stack.

Working in an error-prone environment where the
bandwidth is limited, i.e. where any extra information can
allow to improve greatly the transmission, the proposed
technique allows to:

- locate the information needed to generate extra valid
packets headers and eventually modify the original packets
headers according to the user needs at the network access
level;

- extract the extra information present at the network access
layer and use it as payload data for the extra valid packets sent
over a dedicated port to the application level;

- generate extra valid packets at the application level to
provide extra information at the network access layer;

- extract the extra information sent by the application level
at the network access level.

A. Generating extra valid packets headers to carry extra
information to the application level
As highlighted when presenting the interest of header

compression with the example of ROHC mechanism [7],
header compression relies on the knowledge that the various
header fields in the RTP/UDP/IP protocol stacks have a fixed
syntax that can easily be reconstructed from only partial
information (typically STATIC, STATIC-DEF and
CHANGING classes).

Having observed that fact, it is easy to understand that the
reconstruction mechanism can also in parallel to the data flow
build extra packets based on the same headers fields. Fig. 5.
shows an example of the application of this principle, with
three classes of headers fields for extra packets:

• RECOPIED: they correspond to fields that are directly
copied from valid packets data. In practice, these fields
belong principally to STATIC, STATIC-DEF and

Fig. 5. Generation of header fields for extra packets in a
RTP/UDP/IPv4 stack and their classification.

Fig. 6. Example of header fields modification for original packets in a
RTP/UDP/IPv4 stack.

STATIC-KNOWN data, but can also be CHANGING
one recopied as such (e.g. Timestamp).

• INFERRED: as in standard ROHC process, these fields
are directly derived from the other headers fields.

• SPECIFICALLY DERIVED: these fields are those that
are specifically modified in order to allow for the extra
information transmission process. In particular, we find:
- the Destination Port, that will allow the user to

separate the original data flow from the extra one,
and avoid disturb the standard functioning of the
various protocols (e.g. RTCP). It is proposed for
instance to transport the original data and the extra
information over two distinct transport port numbers;

- the UDP Checksum, which depends of the Payload
data, hence must be re-derived for the new payload
these extra packets will carry;

- the Sequence Number, which will be used to identify
the original packet this extra packet corresponds to;

- the Payload data, which will replaced by the extra
information we want to transmit.

In practice, the values for these specifically modified fields

can be set by the user depending on his requirements. An
example of possible rule to fill these fields is as follows:

• the Destination Port can be chosen whether
dynamically, for instance as the first one directly
available above the original data transmission one, or
be registered as dedicated port for such transmission,
for instance by the IANA organisation
(http://www.iana.org);

• the Sequence Number can be used to identify the
original packet this extra packet corresponds to in case
of a reliability information or a set of packets to which
it can be applied in case of CSI, SSI... In the last case,
the sequence number of the first packet to which it can
be applied may be used. In the first case, a simple
formula such as SeqNumep=k*SeqNumod; can be used,
where k is the number of quantification bits, and
SeqNumod is the sequence number of the original data
packet;

• the payload data can be derived by quantifying the extra
information, as detailed in Section III-C. In the case of
reliability information (DRI or SAI), a typical value for
k is 4 or 5, the first quantification bit being for instance
taken equal to the hard value (original data estimation)
for better efficiency. For extra information such as SSI
or CSI, the format should be specifically pre-
determined between the two coders, for instance with
two information bits for the CSI, coded over four
levels: very bad, bad, good and very good.

B. Modifying original packets accordingly to the user needs
Beside the extra packets, it may be useful for the user to

modify the original packets headers. As a matter of fact, it is
easy to see that the reconstruction process of the headers can
easily be adapted to specific needs of the transmission with
extra information. For example, the checksum fields over the
payload (e.g. the UDP checksum) can be disabled by being set
to zero. In that case, an error in the payload part of the packet
won't lead to the discarding of this packet whose payload may
be corrected thanks to soft source decoding.

An example of such a modification is given in Fig. 6.
Note that such modifications won't disturb the information

transmission, as the original packet is transmitted normally
through the protocol stack. If there are no error in any protocol
headers, the packet goes through the whole stack and is
received at the application level, which ensures that, if used,
RTCP packets are sent normally and guarantee the QoS of the
transmission.

C. Extracting extra information present at the network
access layer and integrating it in extra valid packets for
further use at the application level
Several cases can be envisaged for the extra information to

be transmitted: whether CSI, DRI or any other, this
information must be formatted to fit within the extra packets.
As any other, these packets will transport bits, which implies
that the extra information must be consequently translated into
bits.

Network Access

Source
encoder

Channel
Channel
en/decoder

network layer k (IP)

Hd Comp.
module

SSICSI

… (UDP)
network layer i (RTP)

Channel
en/decoder

Hd Comp.
module

estimated
original

data

extra
information

(CSI…)
quantified

rebuilt
original
packets

generated
extra

packets

Channel
en/decoder

Hd Comp.
module

data flow with
compressed

headers

extra
information

(SSI…)
quantified

data
packets

extra
packets

From network access
to application layer

From application to
network access layer

observations
from the channel

data flow

Fig. 7. Exchanges at the transmitter side with extra information
transmission capacity.

Network Access

Source
decoder

Channel
Channel
en/decoder

network layer k (IP)

Hd Comp.
module

SAIDRI

CSI

… (UDP)
network layer i (RTP)

Channel
en/decoder

Hd Comp.
module

estimated
original

data

extra
information
(CSI,DRI…)
quantified

rebuilt
original
packets

generated
extra

packets

Channel
en/decoder

Hd Comp.
module

data flow with
compressed

headers

extra
information

(SAI…)
quantified

data
packets

extra
packets

From network access
to application layer

From application to
network access layer

data flowobservations
from the channel

Fig. 8. Exchanges at the receiver side with extra information
transmission capacity.

In the case of decoder reliability information, or any
information directly proportional to the original information
payload, this leads to the necessity of a quantification [2]-Ch.3
process over a given number k of bits. In the case of channel
state information, or any information of size not proportional
to the information payload (and in practice quite short), this
implies a quantification or modelling process over a given
number k of bits.

This information extraction made, the quantified values are
to be transmitted in parallel to the standard flow to the header
compression module, which will exploit them.

D. Generating extra packets at the application level for the
network access level and extracting it from the extra packets
at the network access layer
Let now consider the transmission of extra information from

the application level to the network access one. In particular,
as shown in Fig. 2, SSI or SAI can be exploited at the network
access level. For systems using header compression, this is
feasible by generating extra packets at the application level,
that will contain the extra information. Those packets can then
be sent via a dedicated port number, similarly to the network
access to application case. Of course, those packets will be
sent without any ARQ capability, as they won't be actually
transmitted but intercepted at the network access layer. At
network access level, the header compression module that
traditionally performs the header compression, and has in
consequence knowledge of the packets structure is modified to
test the presence of the dedicated port:

• if the dedicated port is found, the module recognises the
extra packet as such and removes it from the data flow.
The payload is then extracted to be used by the channel
decoder (demodulator, …).

• if the port is not part of the dedicated ones, the standard
mechanism is applied.

The exchanges that take place with the proposed technique
are summarised in Fig. 7 for the transmitter side, and in Fig. 8
for the receiver side. The symmetry of these exchanges and the
embedding of the performed treatments within the header
compression modules are highlighted. This strong integration
within the standard process shows that the proposed technique
can be easily integrated in any system using header

compression at the price of a few modification of the channel
coder, source coder and header compression module and are
fully compliant with existing IP networks. Moreover, the
treatments done to implement the proposed technique do not
introduce an important delay, in the sense where after the
header reconstruction for the first original packet, the
generation of the estimated original packet and of all the extra
packets (up to k) can be done in parallel.

IV. CONCLUSIONS

This article presents a technique for exchanging extra
information between the application and the network access
levels in a transparent way through a network protocol stack
for image or video transmissions. This solution is to be
considered for low bit-rate networks such as wireless ones
built over a network protocol stack with header compression
capacity like an RTP/UDP/IP stack implementing ROHC. It
consists in generating extra valid packets containing the
supplementary information one wants to transmit and
multiplex those packets with the original data stream.

Naturally, the interest of this solution comes from the high
error rates over wireless links, that can be reduced thanks to
the exploitation of any new information. This technique can
also be interesting in networks with very long Return Time
Trip (RTT), where the use of CSI could help the behaviour of
the source decoder to choose between requesting
retransmission or applying concealment techniques or other
treatments to the received data, depending on the chance it has
to receive a correct information at its second request.

This technique can also be beneficial when information
about the source bitstream flow such as the SSI can be
provided by source encoder to the channel encoder, as it is the
case when Unequal Error Protection (UEP) is performed at the
network access level.

REFERENCES

[1] L. Perros-Meilhac and C. Lamy, "Huffman tree based
metric derivation for a low-complexity sequential soft VLC
decoding," Proceedings of ICC'02, vol. 2, pp. 783-787, New
York, USA, April-May 2002.

[2] J.G. Proakis. Digital Communications. McGraw-Hill Book
Company, New York, 3rd edition, 1995.

[3] A. Tanenbaum. Computer networks. Prentice-Hall, New-
York, 3rd edition, 1996.

[4] W.R. Stevens. TCP/IP Illustrated volume 1: the protocols.
Addison Wesley Professional Computing Series, Jan. 1999.

[5] A. Rubini. LINUX Device Drivers. O’Reilly and
Associates, 1998.

[6] S. Mérigeault and C. Lamy, "Concepts for Exchanging
Extra Information Between Protocol Layers Transparently for
the Standard Protocol Stack," 10th International Conference
on Telecommunications (ICT'2003), February 23 - March 1,
2003, Tahiti, French Polynesia.

[7] C. Bormann et al., "RFC 3095: RObust Header
Compression (ROHC): framework and four profiles: RTP,
UDP, EPS, and uncompressed", July 2001

[8] M. Degermark, "RFC 3096: Requirements for robust
IP/UDP/RTP header compression", July 2001.

[9] K. Svanbro "RFC:3409: Lower layer guidelines for robust
RTP/UDP/IP header compression," Dec. 2002.

