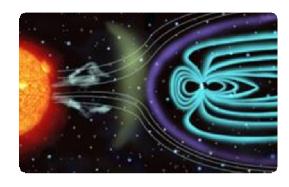
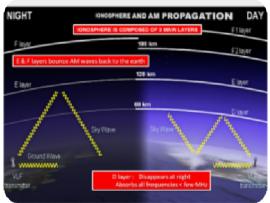
HIGH FREQUENCY INDUSTRY ASSOCIATION

THALES PRESENTATION

San Diego 25 January 2012

Presented by Eric Bader
HF & VHF MKTG Segment Manager


CONSTRAINTS OF HF TRANSMISSION

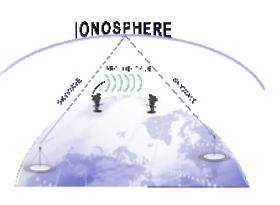


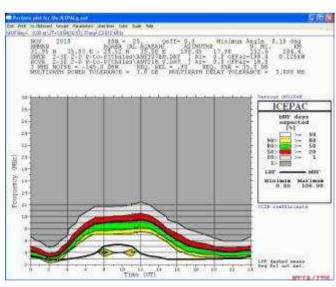
- The HF propagation depends on the sun activity
 - Modification of the ionosphere features

- Usable HF frequencies depend on the LUF and MUF given for a spot at a period of time
- The D layer of ionosphere disappears during the night
 - LUF and MUF are different during the day and night

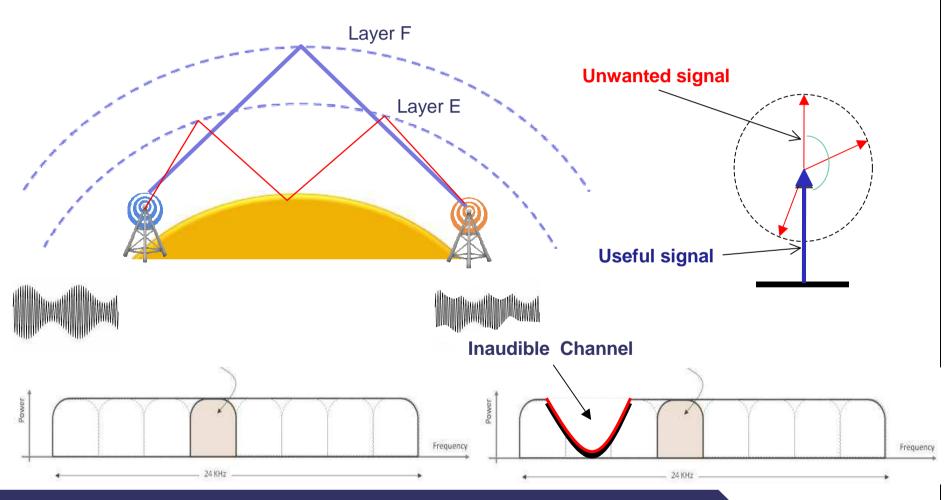
HF TRANSMISSION PROCEDURE

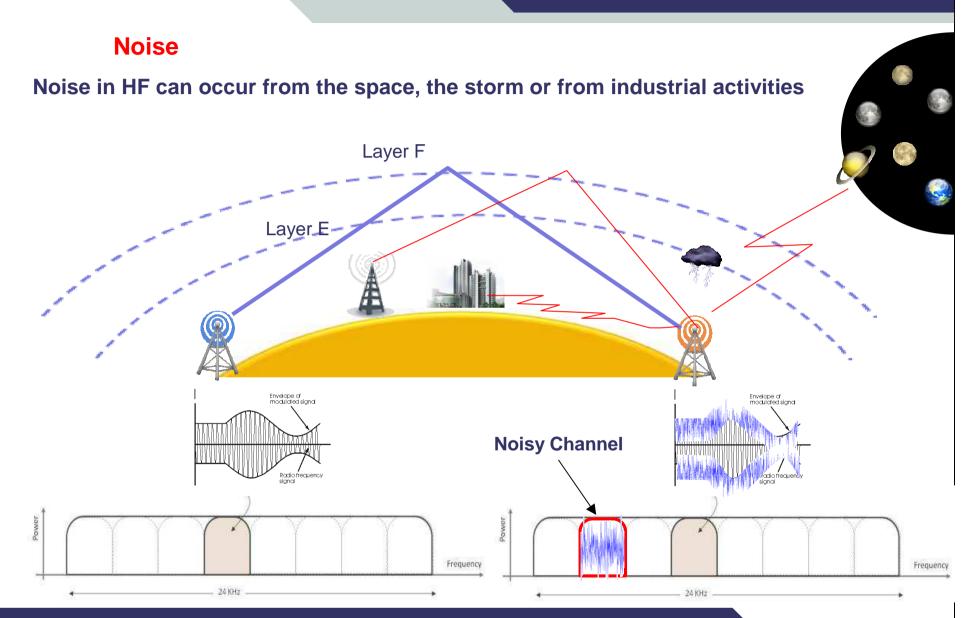
To perform long distance transmission, HF uses the ionosphere properties


• HF Performances linked to the quality of ionosphere


• First step: identify the usable frequencies.

 Use existing free prediction software as VOACAP to set up of frequency list


- Based on the frequency list , the transceiver :
 - chooses one frequency among the list
 - Tries to set up a link with one or several transceivers
 - Exchanges ARQ information reflecting the link quality
- Third Step: If ARQ positive answer then a communication can start

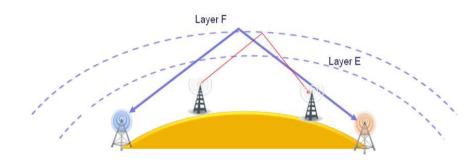


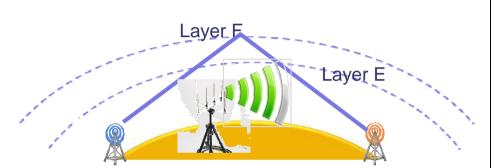
Unpredictable fading

Fading effect can destroy the useful signal or a part of the useful signal

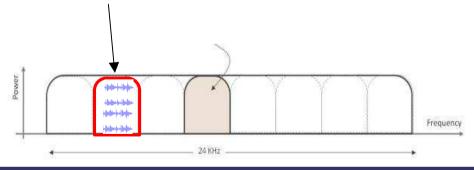
THE RESULT IS AN INAUDIBLE SIGNAL IN THE WORSE CASE

THE RESULT IS AN INAUDIBLE SIGNAL IN THE WORSE CASE

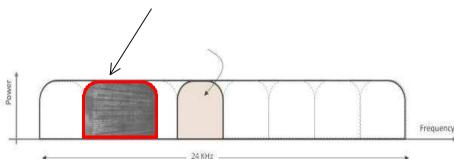

Occupied channel


Occupied channel

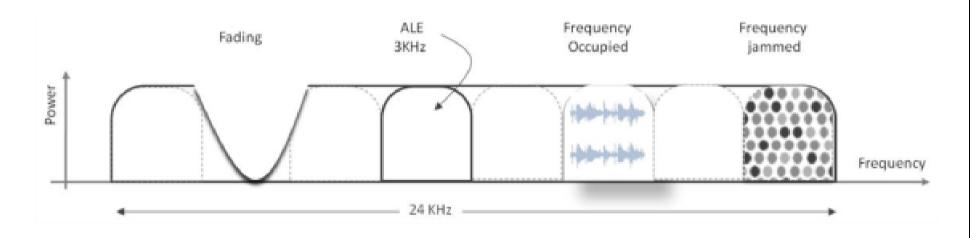
Any HF channel can be used by an other user


Jammed channel

Presence of jammers



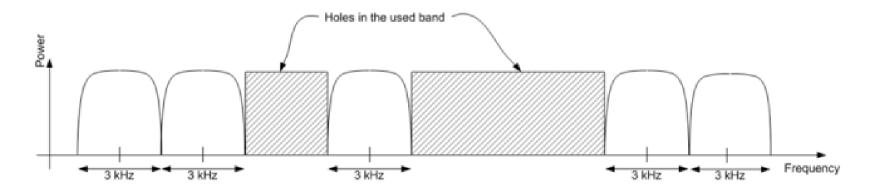
Occupied Channel


Jammed Channels

THE RESULT IS AN INAUDIBLE SIGNAL IN THE WORSE CASE

Wide band HF transmissions have to face some constraints linked to:

the HF propagation and its use



One way to avoid / minimize the HF constraints is to scan continuously the HF spectrum to identify the useable frequencies

Thales 4G solution called HF XL

Our proposal consists in:

- Cleaning the HF spectrum continuously
- **■** Determining the available Frequencies
- Distributing the content over non contiguous channels (...or contiguous if it's possible)

CLEANING SPECTRUM

HOW IT WORKS

- Generation of a hop set
- Analysis of the spectrum
- Cleaning of the hop set
- Broadcast the new free hop set

MAIN ADVANTAGES

- Speed up the ALE process
- Ensure a reliability of communication close to 100%
- Avoid the narrowband jammers or occupied frequencies

AUTOMATIC SELECTION OF FREE FREQUENCIES WITHIN THE HOP BAND

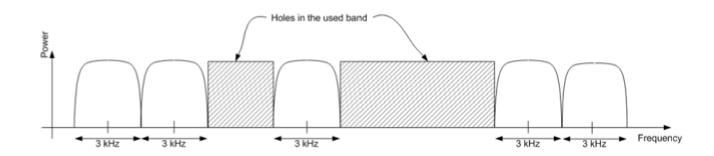
F min

Usable Frequencies

F max

Jammers

F min


F max

Usable Hop Set

With ALE → 100 % successful

THALES PROPOSAL:

- Scan the HF spectrum and check on each the quality
- Perform independent channel modulation respecting the Stanag 4539
- Withdraw any channel with a low SNR
- Perform a dynamic process of channel selection

4G SOLUTION HF XL

ADVANTAGES:

- **♦NO Issues of jammers or unwanted HF frequency occupation**
- **♦** Automatic process that guaranties High level of QoS
- ♦ Re-Use of Current ST 4539
- ◆Full Interoperability with legacy HF radio (if transmission on 1 channel or BLI)
- Offer potential high bit rate roughly 100 kbps with 24 KHz canalization

DRAWBACKS:

- Need higher power (6 dB back off)
- Need wideband antenna and antenna tuning box
- ♦ Digital processing is a little more complex than current (n x ST 4539) modem

TO BE PERFORMED:

- ♦ Standardization of this process ..request will be sent to the NATO group
 - Light modification of the Stanag 4539 Autobaud for calling the HF XL

HF XL: FIRST RESULTS

One prototype is under tests today

- We have just started our measurement campaign and tested our solution
 - Over 300 km (from Thales headquarter to our production Site)
 - with no limitation of channel number
- We have used our broadband tactical antenna
- We have reused our tactical amplifier 400W with certain modifications

- Results obtained:
 - max birate during certain periods of the day: 138 kb/s (TEB <10⁻⁵)
 - o 15 channels used
 - 64 kb/s bitrate (TEB <10⁻⁵) obtained regularly during the day
 - o 8 to 15 channels used

NEXT STEP

■Confirm our results over 1000 km

MIL STD 110C versus HF XL

Stanag modification Mil 110C :Medium

HF XL: light

Tactical transmission

Mil 110C: well adapted to tactical HF XL: better adapted to high power transmission (back off)

Bite Rate

Mil 110C: < 100 Kbps

HF XL: could be higher if nb channel

> 8 ...138Kbps 15 Channels

Implementation

Mil 110C: easier modification HF XL: more sophisticated

Adpative process

Mil 110C: No

HF XL: Yes continuously

Efficiency against Jammers

Mil 110C: No

HF XL: High/ Adaptive allocation

Tactical transmission

Adaptive process

Adaptive process

International Frequency regulation

Power amplification

Frequency occupation

International regulation

Mil 110C :mandatory for eight

channels

HF XL: no need

Power amplification

Mil 110C :mandatory mono carrier

HF XL: need 6 db back-off ..multicarrier

THALES POSITION FOR THE FUTURE 4G HF NETWORK

- Thales is developing both Solutions
- All solutions have advantages and issues to be fixed
- Thales proposal will be fully checked within 2012

Next "rendez vous" in 2012 for a test over 1000 km with the maximum channels available over H24

THALES

THALES

THALES

THANK YOU
FOR YOUR ATTENTION
eric.bader@thalesgroup.com

Modify or Hide in the header / footer properties : Date