

Wideband HF transmissions: towards wideband ALE

HFIA meeting, San Diego, Feb. 13th, 2014

Catherine Lamy-Bergot, J-B. Chantelouve, H. Diakhaté
THALES Communications & Security

THALES

Context

On the interest of wideband reception for ALE improvement

Proposed mechanism principle

Principle of application to asynchronous ALE

Principle of application to synchronous ALE

Preliminary Results

Conclusions

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Feb. 13th, 2014 / TH/TCS/RCP/DT/cl,14/0002/PRE

Several issues raised on the capacity for the end-user and a system to use in practice the wideband HF capability

- Finding the "good" frequency
 - Not anymore only one that is available and between LUF and MUF
 - Issue of bandwidth actually available
- → Obviously the answer is an ALE/ALM mechanism adapted to wideband capability

Question raised by M Jorgenson last BLOS Comms meeting: "what sort of next generation ALE do we need?"

- Accelerating ALE phase (only ?)
- Considering the total time of transmission rather than establishment
 - in particular for large data transmissions
- Backward compatibility ? Which ?

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

A need for both capabilities : quick & good quality

- Accelerating link setup (especially for voice)
- Optimise linking time to required service and protocols
 - High quality channel for large data blocks
 - Short latency for short messages

A need for interoperability

 To ensure the cohabitation of narrow band only users with wideband ones

ALE Process principle

- Narrow band link set up (asynchronous or synchronous)
 - Allows for interoperability
- Sounding phase and 4G link establishment
 - Capable of WBHF or HFXL

ALE 4G: legacy ALE establishment phase

Phase "3kHz": Compatibility with legacy radios

Phase "wideband": Principle

- Performing a sounding for the different channels available
 - Allowed for transmission
 - Not already estimated (LQA)
- Possibly iterating over different central frequencies

Phase "wideband" (cont.): applicability

- Foreseen application for WBHF waveform
 - determine the available 3kHz channels to determine max usable bandwidth and offset
- Foreseen application for HF XL waveform
 - Determine the central frequency and n contiguous or non-contiguous channels usable for transmission
- Foreseen application for efficient HF transmission
 - Taking into account CALLED capabilities, requested QoS and channel quality, determine the best waveform to use and its configuration

Going further: ALE set-up time reduction

- Analysis of ALE procedure shows the large impact of scanning
- Interest to find a solution to improve ALE performance
- → An axis that must be studied: determine the possible usage of (very) wideband reception for improving ALE performance

Feb. 13th, 2014 / TH/TCS/RCP/DT/cl,14/0002/PRE

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Wideband capability ... that is:

- Going beyond the classical paradigm of channel scanning 3kHz by 3kHz (or even 24kHz by 24kHz for WBHF)
- ♦ Listening not only over 3 or 24kHz but 200 kHz or more
 - Capability to listen over several 3kHz channels at the same time, possibly entwined

◆ This will result in quicker average set-up link time ... but also in a better capability to estimate several channels and consequently to select the best one!

Informations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Listening over wideband for ALE: asynchronous case

Listening over wideband for ALE: taking into account wideband emission capability (example of asynchronous case)

Informations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Listening over wideband for ALE: synchronous case

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Proving the feasibility of the very wideband ALE approach

- Listening to several channels disseminated over several 100kHz simultaneously
 - Considering a band Δf around F_c central frequency
 - Sending 10 carriers spread over this Δf band at the same time
- HF XL test bench: used settings
 - Considering a band Δf around F_c central frequency
 - Using two sets of 5 carriers (each over 200kHz of band with central frequency resp. F₁ and F₂)
 - Each carrier modulated in XL waveform with various delay to represent random access to channel
 - Estimating the SNR for each listened channel and selecting as ALE candidate the one with best SNR.

Practical implementation with HF XL test bench

centered on F2

Informations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Illustration of the wideband ALE principle

Preliminary results obtained with HF XL test bench

example with Δf=500kHz

All rights

information.

proprietary

confidential /

/ Thales

réservés.

droits

Lons

de Thales.

propriété

confidentielles /

nformations

Preliminary results obtained with HF XL test bench

example with Δf=800kHz

Informations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Feb. 13th, 2014 / TH/TCS/RCP/DT/cl,14/0002/PRE

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

A new ALE procedure is mandatory for efficient use of new high data rate wideband waveforms proposed recently, as also pointed out by Harris and Rockwell-Collins companies

- ◆ Large interest to have compatibility with existing ALE procedure, to ensure cohabitation of wideband radios in today's narrow band radio world ...
- It would be interesting to have at least two profiles depending on the service
 - Maximal link establishment speed (for phony and short messages)
 - Best total transmission time (for large messages)

Wideband analysis (the wider, the better under system sensitivity limits) is applicable to both WBHF and HFXL waveforms

- One study axis is the analysis of the interest of using wideband in both asynchronous and synchronous domains, and the evaluation of its performance in both case
- Further work on wideband ALE will be carried on within the French MOD contract PEA SALAMANDRE.

THALES will be happy to participate to the definition of a wideband ALE standard allowing usage of both WBHF and HFXL waveforms

Thanks for your attention

catherine . lamy-bergot AT thalesgroup.com

with grateful thanks to our colleagues B. Meuriche, J-Y. Bernier, L. Rakotondrainibe and O. Delestre for their participation

http://www.thalesgroup.com THALES