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Abstract—Until very recently joint source channel techniqguesmostly
focusedon systemsusing fixed-length coding, eventhough variable-length
coding (VLC) is widely used,particularly in video coding Typically, VLC
bit streamsare made channel-robust thr ough packetization and standard
forward-error correction (FEC). However, when the channel conditions
are fairly mild, FEC can reveal itself bandwidth-inefficient. A variable-
rate extensionof joint source channeldecodingcould thus potentially re-
place FEC under mild conditions or, for noisier channels,could be used
togetherwith FEC to ameliorate the coding rate, extendingin both cases
the range of situationsunder which the bit streamis adequatelyprotected.
We proposehere two reduced-complexityVLC soft-input decodingtech-
niques, as well as a comparison with existing algorithms. Experimental
resultsof a new proposedVLC decodingalgorithm show very good per-
formanceand low complexity.

Keywords—joint source channeldecoding, MAP estimation, soft-input
soft-output decoding,variable length code.

|. INTRODUCTION

We considerin this article the classical communication
schemepresentedn Figure 1, wherepopularvariable-length
sourcecoding schemessuch as the Huffman [1] or Lempel-
Ziv [2][3] onesareexplicitely includedat the sourceencoder
part. The channeblock onthe otherhandmayrepreseneither
aclassicatransmissiorthannebr theconcatenatioof achan-
nelencoderatransmissiorthannelanda channeldecoder
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Fig. 1. Communicatiorsystemmodel.

VLC schemesyery efficient in termsof sourcecompres-
sion, arealsovery sensitve to channelerrors. Generally the
higher the obtainedcompressiorfactoris, the more sensitve
the schemes to channelerrors: as a matterof fact, in “effi-
cient” (compression-likspeakingschemesasingleerrorusu-
ally blows up the whole decoding.Oneclassicalway to over-
comethis problemis to useresynchronisatiomethodsartici-
fial blocking,synchronizatiosequencedut alsoconcealment
techniqueg$4]... Unfortunatelyin anerrorproneervironment,
it soonbecomesohvious that thesetechniquesare often too
costfulin termsof bitrateand consequentlyhat only improv-
ing the VLC decodingcould provide substantiabmelioration
in therecovery of thetransmitteddata.

The bestpossibleameliorationto the classicaldecodingal-
gorithm,i.e. to the basicbit-by-bit hard-inputhard-outpude-
coding(hard decoding technique) consistsn thedetermination
of the bestsequenceat the outputof the VLC decoderaccord-
ing to the Maximum A Posteriori (MAP) rule. Givenour sys-
temmodel,this correspondso finding the estimatedsequence
% = argmax Prob(x|y) wherex andy arerespectiely the

original andtherecevedsequences.

In the fixed-lengthcodecase, MAP decodingis classically
achieved by searchingfor the optimal pathin a trellis. This
long-known techniquecan be efficiently implementedvia dy-
namic programming[5][6] and givesvery good results,both
in terms of performanceand compleity. However, in the
variable-lengthcodecase the natureof the codeitself greatly
complicateghe decodingoperationasthereis no moredirect
relationbetweertheinformationsymbolsandtherecevedbits,
so the previously mentionedtechniquesare no more applica-
ble. Recentlysereraldifferentapproachebave beenproposed,
whetherexact but computationallycomplex MAP decoding
methodsor unequallyefficient approximationg7][8][9], and
whetherassumingthe knowledgeof the transmittedsymbols
number{7][9] or not[10][11].

Our paperis structuredas follows. Sectionll introduces
briefly the well-known optimal MAP decodingof variable-
lengthcodesandproposegwo new reduced-compbdty MAP
versionswhoseconstructionis comparedo the onedescribed
in [12]. Simulationresultsarepresentecdindanalysedn Sec-
tion lll. Finally, SectionlV dravs someconclusions.

Il. EXACT AND APPROXIMATE MAP DECODING
TECHNIQUES

A. Existing MAP VLC decoding techniques

As mentionedprevisouly, whereasn thecaseof fixed-length
codessequenceylAP decodingcanbeviewedasthesearchor
the optimal (or equivalently with the bestmetric) pathwithin
a trellis, the caseof variable-lengthcodesneedsmore com-
plicatedgraphsto be solved. The first works in the domain
of suchgraph decodinghave beenthoseof Sayood[7][13]
andPark & Miller[9][12]. Thefirst one,introducedby Demir
& Sayood[7], relies on a path metric which incorporates
both channeland sourcestatistics.In the standardviterbi de-



coder[5], ateachsteponly oneof the pathsenteringa stateis
keptasthe survivor path andthe othersarepruned. It canbe
shawvn thatthe pruningdoesnot affect the optimality of the se-
guenceestimationwhenthe applicationsusefixed lengthpath
labels.However, in the caseof variablelengthpathlabels,dif-
ferentpathsenteringa statehave usedup a differentnumberof
bits from thereceved sequencandcanthereforebe extended
differently. Thepruningwouldthenaffecttheoptimality of the
final selectionsoaclassicalrellis decodingcannotbe used.
New graphrepresentationgyeatly unified and summarised
in [14], have consequentipeenintroducedthatkeepasmary
survivorsastherearepathswith a differentnumberof symbols
(resp.numberof bits) comingatthe consideredtateatagiven
bit time (resp. symboltime). Examplesof thesesgraphs,re-
spectvely denotedsymbol-constrained directed graph andbit-
constrained directed graph, arerecalledin Figure 2 and Fig-
ure 3 for the variable-lengthcode of dimensionK = 3 and
maximallength L., = 2 with codevordsset{0,10,11}.
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Fig. 2. Symbol-constrainedirectedgraphrepresentatiofor VLC decoding.
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Fig. 3. Bit-constrainedlirectedgraphrepresentatiofor VLC decoding

It hasbeenshown in [12] thatthesetwo representationare
not as similar as they first seem. In fact, whereasthey are
equialentin the caseof the optimal MAP decoding,those
two graphswill let differencesappeamhenstatereductionop-
erationsare proposed. In fact, the reductionswill consistin
the comparisorof symbolsequencesf differentlengths(each
dashedsetrepresentedh Figures2 and3) and pruningsome
of them hasnot the sameeffect in both cases.While the bit-

constrainednethodperformsa statereductionthatis consis-
tentwith a MAP criterion andfinds the symbolsequencehat
is MAP-optimal on the resultingreducedgraphvia dynamic
programming the symbol-constraine@dne however only im-
plementsan approximationof the symbol-constrainedMAP
rule. In the first caseindeed,the comparisoris donebetween
pathscontainingthe samenumberof bits, hencewith coherent
apriori probabilitiescontributionswhile in thesecondcasethe
numberof bits differs. Takingthisimportantresultinto consid-
eration,we choosefrom now on to only considercomparison
andcompleity reductiontechniquesvith thebestmethod that
is to saythebit-constraineane.

B. New reduced complexity MAP VLC decoding techniques

The main problemof the decodingis the huge numberof
statesin the graphwhenthe sequencdengthgrows. In fact,
it is obvious from the constructionof the decodinggraph,il-
lustratedin Figure3 for a codeof dimension3, thatthe num-
ber of statesper bit 'time’ or trellis bit stepis linear with the
value of the trellis bit stepparameter Sucha compleity be-
ing obviously prohibitive, Park & Miller proposedo pruneall
statesbut onein eachdashedsetof their bit-constrainedep-
resentation While this statereductionleadsto a drasticcom-
plexity reduction,it however losesin termsof performance,
aswill be shavn in Sectionlll. We proposein this papera
first method,denotedApproximate Maximum A Posteriori de-
coding 1 (AMAP-1) which leadsto a differentstatereduction
operation.Choosingo applyamethodverysimilarto dynamic
programmingwe still rely first on a forwardpropagatiorwith
metricderivationprocesswherethe pointersto previousstates
aresavedandin thesecondstepatracebaclprocesgo establish
the optimal sequenceWhereasn standarddynamicprogram-
ming, this first forward operationwould save at eachtime and
for eachnumbert of symbolsthe bestpartial sequenceéermi-
natingin eachgraphstate we proposehereto keeponly onese-
quencefor eachnumbert of symbolsat eachtime. The saved
sequencavill be the bestin the senseof partial a posteriori
probabilityfor all graphstatesatthe consideredrellis bit step.
An exampleof this statereductionis givenin Figure4 where
the crosseshaw the statesthat areremoved. Note thatwhen
astateis removed,it impliesthatthebrancheshatwould have
comefrom it areno moreconsideredslikely candidatesthe
reductionof the trellis sizeis clearly noticeable asthe num-
ber of surviving statesin the trellis at steps (i.e. for a partial
sequencef ; bits) is at mostequalto ;.

We proposealsoa secondnethod,denotedAMAP-2 which
correspondso keepingat eachtrellis bit stepthe Nb,,,,, best
statesn the senseof partiala posteriori probability An exam-
ple of this statereductionis givenin Figure5 wherethecrosses
shawv the stateghatareremoved. Hereagainthe removal of a
stateimplies that the brancheghat would have comefrom it
areno more consideredaslikely candidates.The trellis size
reductionis even morenoticeableandeasilyadjustableasthe
numberof surviving statesn thetrellis atstepi is atmostequal



Fig. 4. Bit-constrainedirectedgraphrepresentatiofor VLC decodingafter
AMAP-1 statereduction.
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Fig. 5. Bit-constrainedirectedgraphrepresentatiofor VLC decodingafter
AMAP-2 statereduction.

In bothmethodsaswell asin Park & Miller suboptimalde-
coding (denotedPM-AMAP), the final decisionis taken be-
tweenthe pathsendingwith the correctand supposedknown
numberof transmittedsymbols.

I1l. NUMERICAL RESULTS ON DECODING PERFORMANCE
AND COMPLEXITY

We testedhetwo new reduction-statenethodswith aBPSK
modulationover an additive white Gaussiamoisechannel.In
eachcasewe usedthe variable-lengthcodeCy = {0,10,11}
with dimensionK = 3, maximallengthL,,,, = 2 andsymbol
probabilities{p(0) = 0.5, p(10) = 0.25, p(11) = 0.25} and
the variable-lengthcodeC; = {0,100,101,110,1110,1111}
with dimensionK = 6, maximal length L,,,, = 4 and
symbol probabilities{p(0) = 0.5, p(100) = 0.15, p(101) =
0.17, p(110) = 0.08, p(1110) = 0.06, p(1111) = 0.04} [15].

Figures6 and7 presentperformanceaesultsfor seseral ref-
erencecurves: classicalhard VLC decodingperformancgin
circles), optimal soft-input VLC decoding(in squares)and
PM-AMAP (in trianglesup). We proposeto comparethose
curves with the two solutionswe elaborated: AMAP-1 (in
crossespnd AMAP-2 (in trianglesright) for which the num-
ber Nb,,... = 3 of statesto keepat eachstepwas chosen
equalto the one obtainedfor the PM-AMAP to ensurea fair
comparison.

As expected,all performanceare boundedby thoseof the
MAP (optimal)decoding(in squaresandthoseof the hardde-
coding. FromFigure®6, it appearshat AMAP-1 andAMAP-2
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Fig. 6. Paclet Error Ratevs. signal-to-noiseatio E;, /No performanceor
varioussoft VLC decodingalgorithmswhenappliedto codeCy for frames
of 100 transmittedsymbols.
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Fig. 7. Paclet Error Ratevs. signal-to-noiseatio Ey/Ng performanceor
varioussoftVLC decodingalgorithmswhenappliedto codeC; for frames
of 100 transmittedsymbols.

methodsperform betterthan the PM-AMAP oné'. A study
of the trellis complexity for eachof thesesoft-inputmethods
is givenin Figure 8, that constitutesa good evaluationof the
overall algorithm compleity sincethe numberof transitions
per stateis the samefor eachalgorithm, and consequently

! Although PM-AMAP performssignificantly betterthan hard decodingin
termsof bit errorrate,it doesnot alwaysseemto achiee susbtantiabenefits
in termsof paclet errorrate.



represents first approachin termsof designand costfeasi-
bility for the several approximatealgorithms. It appearghat
while the optimal soft VLC decodingandour first suboptimal
method(AMAP-1) shov acompleity linearwith thetrellis bit
stepsPM-AMAP suboptimabecodingandour secondnethod
(AMAP-2) areboth independenbf the trellis bit stepsvalue.
Similar resultscan be obtainedwhen consideringthe caseof
codeC;. Fromthe resultspresentedn thosethreefigures,it
appearghatthe overall bestsolutionis the AMAP-2 method,
sinceit givesa betterpacleterrorrate (PER)with lower trellis
complity whencomparedo existing sub-optimaimethods.
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Fig. 8. Trellis compleity study for varioussoft VLC decodingalgorithms
whenappliedto codeCy for framesof 100 transmittedsymbols.

IV. CONCLUSIONS

We proposecdhereto usea joint sourcechannel(de)coding
methodthat usesthe residual sourceredundang as a form
of implicit channelprotection. The decoderactsthen as a
statistical estimatorof the transmittedbitstream. Two new
reduced-compbaty MAP decodingtechniquesfor variable-
length codesare describedyalid for both a hardinput anda
softinput at the entranceof the considered/LC decoder Ob-
viously, themethodshowsiits strengthmainly for softinput.

As amatterof fact,the performancenbtainedoy simulation
with the A-MAP algorithm reachthe optimal soft-input per
formancefor atrellis compleity independenof the trellis bit
stepsvalue.
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