

BOSS: On Board Wireless Secured Video Surveillance

Demonstration in RENFE carriage
April 23th, 2009
Madrid, Spain

Overview

- BOSS project context
 - Consortium
 - Goals
 - Work strategy followed
- System architecture
 - Architecture design
 - Prototype
- Key technical improvements and advances
- Conclusions

BOSS project context

Project type:

- Celtic EUREKA project
- European countries participating in order to work on research and technologies
- Focus on telecommunications

R&D project

- Going for state-of-the art solutions and exploring the future
- Proposing advances
- Demonstrating the validity of the approach and confirming the choices made

BOSS project context

- Project aim: propose a reliable solution to increase the security of passengers inside commuter trains
 - Design of a technical solution allowing the deployment of a security solution for passengers against attacks/crisis, but also follow-up of maintenance issues for the rolling stock
 - Study and establishment of a high data-rate communication system between the trains and the wayside to allow a distant monitoring of passengers security but also preventive maintenance
- Project consortium 12 partners in 4 European countries

BOSS project context

User needs

- Systems taking into account railway exploitation specificities
- Easy to operate system: more autonomy, <u>remote access</u> to alarms
 & images as soon as possible <u>is necessary</u>
- Plain data storage is very limited in practice

User expectations

- Improving reaction time will availability and reliability increase
- Less operators needed, simplification of data handling
- Easier adaptation to regulations (and their changes)
- → Cost reductions and increased reactivity in case of problem (maintenance, attack)

BOSS project – C. Lamy-Bergot / 23 april 2009

BOSS project context

- Work strategy followed in the project: which research axes for what improvements?
 - User requirements collection and analysis
 - Data acquisition and event detection solutions development
 - Real-time solutions: audio, video, maintenance
 - Future advanced solutions (research)
 - Multimedia data processing and robustness enhancement
 - Real-time encoding over BARCO/THALES compression card
 - Software real-time advanced video decoder
 - Robustness of the video to errors and losses
 - Wireless link efficiency
 - Mobile dual connection system (UMTS/WiMAX) for coverage of lines
 - Future WiMAX-like MIMO solutions (research)
 - Handovers with by GPS aided prediction

System architecture

Functional approach

BOSS project – C. Lamy-Bergot / 23 april 2009

System architecture

Declination into BOSS demonstrator architecture

BOSS project – C. Lamy-Bergot / 23 april 2009

BOSS key bricks

- BOSS has advanced under the principle of specifying and developing key bricks to
 - Ensure common interfaces/mode of operation
 - Propose improvements over standard solutions (better solutions and yet not too far from compatibility)

This translates into:

- Streaming of multimedia data (video, audio) → RTSP over UDP
- Messages exchanges in a large network → <u>SIP</u> messages and SIP server and <u>events detection (XML)</u>
- Wireless mobility with handovers (vertical & horizontal) management → MIPv6, WiMAX (standard or evolved)
- Advanced video coding → H.264
- Sensors connection and data retrieval → Zigbee, 6LoWPAN
- Advanced routing → <u>DCCP</u>, <u>QoS</u> management

Key technical improvements

- Detection of abnormal events
 - Video
 - Audio
 - Maintenance

Key technical improvements

- Video compression and protection
 - Real-time software AVC and SVC codec
 - Real-time H.264/AVC encoding board Video robustness enhancement
 - Transcoding for video adaptation to transmission conditions
- Data supervision activity for streams admission and protection control
- Video encryption backward compatible with H.264
 - Authentication via NFC device

Visual result for BOSS 'Anomaly' sequence: embedding fixed protection is not enough

Configuration:

Video sequence CIF, 30Hz, BSC (4.10⁻⁴) adapted RS(255,250), RS(128,120), RS(255,191) vs. with RS(128,120)

Key technical improvements

- "WiMAX" realisations
 - Dual WiMAX/UMTS outdoor link [load balancer and mobility support]

WMAX IPV6
Burnel Guller

UMTS Indoor
Buffer out

UMTS

MIMO techniques for WiMAX-like radio access

Platform Architecture

Mean BER vs. SNR for uplink communication and various mobile speed (fix, 40 km/h and 60km/h)

Configuration : MIMO2*2, Q-PSK, Alamouti coding, 0 or 40 or 60 km/h mobile speed, Sub urban area

Key technical improvements (not integrated in demonstration)

Advanced Wi-Fi mesh routing for connectivity over several

carriages

8
7
7
(sd) wo 5
7
Flow 1
Flow 2
1
0
0.5
1
1.5
2
Offered load (bps)
x 10⁶

- GPS-aided handover prediction
 - use of previously recorded access network properties to predict handovers based on the GPS information.

- Principle of the architecture has been validated in "lab" test-bed
 - Adaptation of streams is a good solution to fit with variable transmission conditions
 - Detection of events is a good way to help the operator to focus on potential problems and avoid sink into plethoric data)
 - Outdoor connection validation in static and car (WiMAX standard)
- Final step: integration of all elements together and in the train

- A first warning: integration in the train has encountered unexpected problems
 - UMTS coverage not available due to UMTS router burnt on Wednesday
 - → WiMAX coverage around Pinto station alone is not sufficient to obtain a real outdoor link

Realisation

- Equipment placed in rack in technical cabin
- Access in indoor through WiFI
- Specific demonstration with wired connection for "PCC0"

- What will be shown
 - Controller interface : PDA for video and alarms
 - Issue of communication security (ciphering)
 - Transmission of videos from acquired sequences (due to non real-time ciphered compression)
 - Alarms display possible on PDA through web interface (example of maintenance)
 - Maintenance alarms
 - Two sensors types and technologies (Zigbee, 6LoWPAN)
 - Interface display for alarms rendering and sensors management

- What will be shown
 - Real-time compression from train cameras
 - Compression in H.264/AVC (latest digital TV standard)
 - Parallel placement of data in storage
 - Video alarms generation (live)
 - Real-time audio grabbing from microphone
 - Audio alarm generation (SIP messages sent to PCC offline)
 - On-demand streaming of videos with adaptation to link capabilities (intelligent transcoding)
 - SIP based communication: client only asks for a given media, and SIP manages the correspondance and allows the RTSP communication to take place
 - PCC interface proposal (off-line)

- In practice we propose the following:
 - Going to Atocha-Renfe to take the equipped train
 - Train equipment presentation
 - Demonstration inside the train (going from Atocha-Renfe to Aranjuez and back):
 - "Controller" demonstrations
 - Sensors and alarms demonstration
 - Real-time video streaming of camera images to an observer
 - Real-time audio streaming
 - On-request video data adaptation
 - Visit in Pinto station: WiMAX equipment
 - Demonstration of PCC approach in RENFE PCC (in Atocha-Renfe)

We would like ...

To gratefully thank RENFE for having allowed us to access a carriage and perform tests inside, without having even been partner to the project

For more information

- Please do not hesitate to contact us
 - Project is ending in May/June but partners are willing to see the results disseminated and used by "real" users
 - NB: in particular, the GPS aided handover prediction is to be demonstrated this month to Hungarian authorities. Interested people can contact people from BME.
- Presentations, papers, publications are available on our web site: http://www.celtic-boss.org
 - BOSS project has shown that the road to adaptive video surveillance was possible and could be followed. The next step is now to go from the R&D project to an actual product.